metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
model-index:
- name: swin-tiny-patch4-window7-224
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.76
- name: Precision
type: precision
value: 0.7692631578947368
- name: Recall
type: recall
value: 0.76
swin-tiny-patch4-window7-224
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5138
- Accuracy: 0.76
- Precision: 0.7693
- Recall: 0.76
- F1 Score: 0.6932
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|---|
No log | 1.0 | 8 | 0.5844 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
0.6556 | 2.0 | 16 | 0.5703 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
0.5707 | 3.0 | 24 | 0.5585 | 0.7417 | 0.8090 | 0.7417 | 0.6397 |
0.5383 | 4.0 | 32 | 0.6247 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
0.5149 | 5.0 | 40 | 0.5308 | 0.7792 | 0.7885 | 0.7792 | 0.7281 |
0.5149 | 6.0 | 48 | 0.5445 | 0.7833 | 0.8155 | 0.7833 | 0.7274 |
0.4879 | 7.0 | 56 | 0.5620 | 0.7667 | 0.7709 | 0.7667 | 0.7064 |
0.453 | 8.0 | 64 | 0.5384 | 0.7708 | 0.7695 | 0.7708 | 0.7178 |
0.4249 | 9.0 | 72 | 0.5377 | 0.7542 | 0.7276 | 0.7542 | 0.7054 |
0.4001 | 10.0 | 80 | 0.5417 | 0.7667 | 0.7575 | 0.7667 | 0.7147 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3