metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
model-index:
- name: swin-tiny-patch4-window7-224
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7133333333333334
- name: Precision
type: precision
value: 0.6732516172965611
- name: Recall
type: recall
value: 0.7133333333333334
swin-tiny-patch4-window7-224
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5797
- Accuracy: 0.7133
- Precision: 0.6733
- Recall: 0.7133
- F1 Score: 0.6650
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|---|
No log | 1.0 | 4 | 0.5965 | 0.725 | 0.5256 | 0.725 | 0.6094 |
No log | 2.0 | 8 | 0.6045 | 0.7125 | 0.5795 | 0.7125 | 0.6104 |
No log | 3.0 | 12 | 0.5910 | 0.725 | 0.6645 | 0.725 | 0.6169 |
0.6165 | 4.0 | 16 | 0.5865 | 0.7333 | 0.7162 | 0.7333 | 0.6418 |
0.6165 | 5.0 | 20 | 0.5789 | 0.7292 | 0.6846 | 0.7292 | 0.6562 |
0.6165 | 6.0 | 24 | 0.5649 | 0.725 | 0.6702 | 0.725 | 0.6427 |
0.6165 | 7.0 | 28 | 0.5660 | 0.7375 | 0.7090 | 0.7375 | 0.6668 |
0.5966 | 8.0 | 32 | 0.5972 | 0.7375 | 0.7108 | 0.7375 | 0.7132 |
0.5966 | 9.0 | 36 | 0.5666 | 0.7417 | 0.7134 | 0.7417 | 0.6835 |
0.5966 | 10.0 | 40 | 0.5781 | 0.7417 | 0.7124 | 0.7417 | 0.7084 |
0.5966 | 11.0 | 44 | 0.6009 | 0.7083 | 0.6900 | 0.7083 | 0.6967 |
0.5921 | 12.0 | 48 | 0.5678 | 0.75 | 0.7244 | 0.75 | 0.7118 |
0.5921 | 13.0 | 52 | 0.5581 | 0.7583 | 0.7429 | 0.7583 | 0.7115 |
0.5921 | 14.0 | 56 | 0.5587 | 0.7542 | 0.7340 | 0.7542 | 0.7083 |
0.5847 | 15.0 | 60 | 0.5589 | 0.7542 | 0.7340 | 0.7542 | 0.7083 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3