HorcruxNo13's picture
update model card README.md
ee8e544
|
raw
history blame
6.78 kB
metadata
license: other
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1291
  • Mean Iou: 0.4322
  • Mean Accuracy: 0.8644
  • Overall Accuracy: 0.8644
  • Accuracy Unlabeled: nan
  • Accuracy Tool: nan
  • Accuracy Wear: 0.8644
  • Iou Unlabeled: 0.0
  • Iou Tool: nan
  • Iou Wear: 0.8644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Tool Accuracy Wear Iou Unlabeled Iou Tool Iou Wear
0.8371 1.82 20 0.9482 0.3285 0.9854 0.9854 nan nan 0.9854 0.0 0.0 0.9854
0.6335 3.64 40 0.7489 0.4996 0.9992 0.9992 nan nan 0.9992 0.0 nan 0.9992
0.5053 5.45 60 0.5400 0.4975 0.9949 0.9949 nan nan 0.9949 0.0 nan 0.9949
0.3924 7.27 80 0.4544 0.4905 0.9810 0.9810 nan nan 0.9810 0.0 nan 0.9810
0.3419 9.09 100 0.3840 0.4727 0.9455 0.9455 nan nan 0.9455 0.0 nan 0.9455
0.3379 10.91 120 0.3407 0.4648 0.9296 0.9296 nan nan 0.9296 0.0 nan 0.9296
0.2639 12.73 140 0.3495 0.4780 0.9559 0.9559 nan nan 0.9559 0.0 nan 0.9559
0.224 14.55 160 0.2815 0.4541 0.9081 0.9081 nan nan 0.9081 0.0 nan 0.9081
0.1725 16.36 180 0.2896 0.4599 0.9199 0.9199 nan nan 0.9199 0.0 nan 0.9199
0.1623 18.18 200 0.2540 0.4679 0.9359 0.9359 nan nan 0.9359 0.0 nan 0.9359
0.1724 20.0 220 0.2567 0.4702 0.9404 0.9404 nan nan 0.9404 0.0 nan 0.9404
0.1503 21.82 240 0.1967 0.4459 0.8919 0.8919 nan nan 0.8919 0.0 nan 0.8919
0.1189 23.64 260 0.2153 0.4617 0.9234 0.9234 nan nan 0.9234 0.0 nan 0.9234
0.1007 25.45 280 0.1695 0.4324 0.8648 0.8648 nan nan 0.8648 0.0 nan 0.8648
0.0921 27.27 300 0.1540 0.4346 0.8691 0.8691 nan nan 0.8691 0.0 nan 0.8691
0.0897 29.09 320 0.1657 0.4538 0.9077 0.9077 nan nan 0.9077 0.0 nan 0.9077
0.0814 30.91 340 0.1519 0.4374 0.8749 0.8749 nan nan 0.8749 0.0 nan 0.8749
0.0729 32.73 360 0.1444 0.4430 0.8861 0.8861 nan nan 0.8861 0.0 nan 0.8861
0.0892 34.55 380 0.1283 0.4106 0.8213 0.8213 nan nan 0.8213 0.0 nan 0.8213
0.07 36.36 400 0.1442 0.4374 0.8748 0.8748 nan nan 0.8748 0.0 nan 0.8748
0.0619 38.18 420 0.1391 0.4296 0.8592 0.8592 nan nan 0.8592 0.0 nan 0.8592
0.0563 40.0 440 0.1283 0.4402 0.8804 0.8804 nan nan 0.8804 0.0 nan 0.8804
0.0582 41.82 460 0.1275 0.4297 0.8595 0.8595 nan nan 0.8595 0.0 nan 0.8595
0.0575 43.64 480 0.1341 0.4362 0.8724 0.8724 nan nan 0.8724 0.0 nan 0.8724
0.068 45.45 500 0.1132 0.4181 0.8362 0.8362 nan nan 0.8362 0.0 nan 0.8362
0.0595 47.27 520 0.1285 0.4316 0.8632 0.8632 nan nan 0.8632 0.0 nan 0.8632
0.0558 49.09 540 0.1291 0.4322 0.8644 0.8644 nan nan 0.8644 0.0 nan 0.8644

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3