|
--- |
|
license: other |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
model-index: |
|
- name: segformer-b0-finetuned-segments-toolwear |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-b0-finetuned-segments-toolwear |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on the HorcruxNo13/toolwear_segmentsai dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2940 |
|
- Mean Iou: 0.4104 |
|
- Mean Accuracy: 0.8207 |
|
- Overall Accuracy: 0.8207 |
|
- Accuracy Unlabeled: nan |
|
- Accuracy Tool: nan |
|
- Accuracy Wear: 0.8207 |
|
- Iou Unlabeled: 0.0 |
|
- Iou Tool: nan |
|
- Iou Wear: 0.8207 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:| |
|
| 0.843 | 1.82 | 20 | 0.8832 | 0.4637 | 0.9274 | 0.9274 | nan | nan | 0.9274 | 0.0 | nan | 0.9274 | |
|
| 0.6849 | 3.64 | 40 | 0.5914 | 0.4361 | 0.8722 | 0.8722 | nan | nan | 0.8722 | 0.0 | nan | 0.8722 | |
|
| 0.5085 | 5.45 | 60 | 0.5178 | 0.4628 | 0.9256 | 0.9256 | nan | nan | 0.9256 | 0.0 | nan | 0.9256 | |
|
| 0.4027 | 7.27 | 80 | 0.5099 | 0.4598 | 0.9195 | 0.9195 | nan | nan | 0.9195 | 0.0 | nan | 0.9195 | |
|
| 0.3536 | 9.09 | 100 | 0.4262 | 0.4365 | 0.8730 | 0.8730 | nan | nan | 0.8730 | 0.0 | nan | 0.8730 | |
|
| 0.3657 | 10.91 | 120 | 0.3891 | 0.4228 | 0.8457 | 0.8457 | nan | nan | 0.8457 | 0.0 | nan | 0.8457 | |
|
| 0.3234 | 12.73 | 140 | 0.4221 | 0.4377 | 0.8754 | 0.8754 | nan | nan | 0.8754 | 0.0 | nan | 0.8754 | |
|
| 0.2874 | 14.55 | 160 | 0.3355 | 0.4098 | 0.8197 | 0.8197 | nan | nan | 0.8197 | 0.0 | nan | 0.8197 | |
|
| 0.2335 | 16.36 | 180 | 0.3570 | 0.4266 | 0.8531 | 0.8531 | nan | nan | 0.8531 | 0.0 | nan | 0.8531 | |
|
| 0.2167 | 18.18 | 200 | 0.3238 | 0.4404 | 0.8808 | 0.8808 | nan | nan | 0.8808 | 0.0 | nan | 0.8808 | |
|
| 0.2201 | 20.0 | 220 | 0.3103 | 0.4185 | 0.8370 | 0.8370 | nan | nan | 0.8370 | 0.0 | nan | 0.8370 | |
|
| 0.205 | 21.82 | 240 | 0.2881 | 0.4115 | 0.8230 | 0.8230 | nan | nan | 0.8230 | 0.0 | nan | 0.8230 | |
|
| 0.241 | 23.64 | 260 | 0.2940 | 0.4104 | 0.8207 | 0.8207 | nan | nan | 0.8207 | 0.0 | nan | 0.8207 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|