HorcruxNo13's picture
update model card README.md
d5998f0
|
raw
history blame
4.16 kB
metadata
license: other
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1501
  • Mean Iou: 0.4560
  • Mean Accuracy: 0.9040
  • Overall Accuracy: 0.9643
  • Accuracy Unlabeled: nan
  • Accuracy Wear: 0.8404
  • Accuracy Tool: 0.9675
  • Iou Unlabeled: 0.0
  • Iou Wear: 0.4034
  • Iou Tool: 0.9646

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Wear Accuracy Tool Iou Unlabeled Iou Wear Iou Tool
0.4464 1.82 20 0.6527 0.3325 0.5116 0.9740 nan 0.0242 0.9990 0.0 0.0235 0.9740
0.3069 3.64 40 0.3300 0.4958 0.8505 0.9661 nan 0.7288 0.9723 0.0 0.5213 0.9662
0.276 5.45 60 0.2597 0.4089 0.9324 0.9368 nan 0.9278 0.9370 0.0 0.2909 0.9358
0.2648 7.27 80 0.2321 0.4338 0.8839 0.9567 nan 0.8071 0.9607 0.0 0.3441 0.9572
0.245 9.09 100 0.2298 0.4021 0.9265 0.9359 nan 0.9167 0.9364 0.0 0.2715 0.9348
0.2047 10.91 120 0.1897 0.4379 0.8814 0.9446 nan 0.8147 0.9480 0.0 0.3684 0.9455
0.1695 12.73 140 0.1681 0.4561 0.8444 0.9636 nan 0.7188 0.9701 0.0 0.4026 0.9657
0.1556 14.55 160 0.1741 0.4289 0.9060 0.9494 nan 0.8603 0.9517 0.0 0.3372 0.9497
0.1435 16.36 180 0.1528 0.4746 0.8851 0.9679 nan 0.7978 0.9723 0.0 0.4549 0.9689
0.1208 18.18 200 0.1648 0.4379 0.9126 0.9577 nan 0.8650 0.9601 0.0 0.3560 0.9577
0.1425 20.0 220 0.1587 0.4451 0.9116 0.9576 nan 0.8631 0.9601 0.0 0.3774 0.9578
0.1124 21.82 240 0.1515 0.4291 0.9044 0.9491 nan 0.8574 0.9515 0.0 0.3380 0.9493
0.1509 23.64 260 0.1501 0.4560 0.9040 0.9643 nan 0.8404 0.9675 0.0 0.4034 0.9646

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3