HorcruxNo13's picture
update model card README.md
c5282ca
|
raw
history blame
5.96 kB
metadata
license: other
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0480
  • Mean Iou: 0.4892
  • Mean Accuracy: 0.9785
  • Overall Accuracy: 0.9785
  • Accuracy Unlabeled: nan
  • Accuracy Tool: 0.9785
  • Iou Unlabeled: 0.0
  • Iou Tool: 0.9785

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Tool Iou Unlabeled Iou Tool
0.257 1.82 20 0.4274 0.4894 0.9788 0.9788 nan 0.9788 0.0 0.9788
0.14 3.64 40 0.1857 0.4878 0.9756 0.9756 nan 0.9756 0.0 0.9756
0.0945 5.45 60 0.1383 0.4877 0.9754 0.9754 nan 0.9754 0.0 0.9754
0.0766 7.27 80 0.1041 0.4907 0.9813 0.9813 nan 0.9813 0.0 0.9813
0.0752 9.09 100 0.1055 0.4836 0.9672 0.9672 nan 0.9672 0.0 0.9672
0.0433 10.91 120 0.1180 0.4659 0.9318 0.9318 nan 0.9318 0.0 0.9318
0.0358 12.73 140 0.0857 0.4831 0.9662 0.9662 nan 0.9662 0.0 0.9662
0.0357 14.55 160 0.0765 0.4865 0.9730 0.9730 nan 0.9730 0.0 0.9730
0.0401 16.36 180 0.0898 0.4793 0.9587 0.9587 nan 0.9587 0.0 0.9587
0.042 18.18 200 0.0755 0.4828 0.9655 0.9655 nan 0.9655 0.0 0.9655
0.0366 20.0 220 0.0744 0.4818 0.9635 0.9635 nan 0.9635 0.0 0.9635
0.0213 21.82 240 0.0708 0.4828 0.9656 0.9656 nan 0.9656 0.0 0.9656
0.0284 23.64 260 0.0684 0.4851 0.9701 0.9701 nan 0.9701 0.0 0.9701
0.0237 25.45 280 0.0625 0.4879 0.9757 0.9757 nan 0.9757 0.0 0.9757
0.0189 27.27 300 0.0603 0.4858 0.9716 0.9716 nan 0.9716 0.0 0.9716
0.026 29.09 320 0.0632 0.4860 0.9719 0.9719 nan 0.9719 0.0 0.9719
0.0231 30.91 340 0.0662 0.4840 0.9680 0.9680 nan 0.9680 0.0 0.9680
0.0218 32.73 360 0.0563 0.4855 0.9710 0.9710 nan 0.9710 0.0 0.9710
0.0253 34.55 380 0.0627 0.4848 0.9697 0.9697 nan 0.9697 0.0 0.9697
0.0142 36.36 400 0.0621 0.4844 0.9689 0.9689 nan 0.9689 0.0 0.9689
0.0214 38.18 420 0.0668 0.4820 0.9639 0.9639 nan 0.9639 0.0 0.9639
0.0166 40.0 440 0.0555 0.4858 0.9716 0.9716 nan 0.9716 0.0 0.9716
0.0185 41.82 460 0.0545 0.4859 0.9718 0.9718 nan 0.9718 0.0 0.9718
0.0218 43.64 480 0.0500 0.4876 0.9753 0.9753 nan 0.9753 0.0 0.9753
0.0184 45.45 500 0.0481 0.4892 0.9784 0.9784 nan 0.9784 0.0 0.9784
0.018 47.27 520 0.0487 0.4893 0.9786 0.9786 nan 0.9786 0.0 0.9786
0.0254 49.09 540 0.0480 0.4892 0.9785 0.9785 nan 0.9785 0.0 0.9785

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.13.3