HorcruxNo13's picture
update model card README.md
8735b9f
|
raw
history blame
4.16 kB
metadata
license: other
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1338
  • Mean Iou: 0.4591
  • Mean Accuracy: 0.7164
  • Overall Accuracy: 0.9595
  • Accuracy Unlabeled: nan
  • Accuracy Wear: 0.4489
  • Accuracy Tool: 0.9838
  • Iou Unlabeled: 0.0
  • Iou Wear: 0.4154
  • Iou Tool: 0.9618

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Wear Accuracy Tool Iou Unlabeled Iou Wear Iou Tool
0.5488 1.82 20 0.7199 0.3293 0.5153 0.9405 nan 0.0476 0.9830 0.0 0.0475 0.9404
0.5195 3.64 40 0.3507 0.3622 0.5634 0.9239 nan 0.1667 0.9600 0.0 0.1629 0.9236
0.2738 5.45 60 0.2569 0.4662 0.7496 0.9435 nan 0.5363 0.9629 0.0 0.4547 0.9438
0.2461 7.27 80 0.2220 0.4491 0.7057 0.9482 nan 0.4389 0.9725 0.0 0.3982 0.9492
0.1999 9.09 100 0.1962 0.4492 0.7084 0.9597 nan 0.4319 0.9848 0.0 0.3860 0.9616
0.2004 10.91 120 0.1890 0.4031 0.6239 0.9537 nan 0.2610 0.9867 0.0 0.2539 0.9553
0.4753 12.73 140 0.1704 0.4360 0.6760 0.9494 nan 0.3753 0.9768 0.0 0.3562 0.9518
0.1606 14.55 160 0.1579 0.4483 0.7028 0.9580 nan 0.4222 0.9835 0.0 0.3822 0.9625
0.1388 16.36 180 0.1519 0.4829 0.7940 0.9565 nan 0.6152 0.9728 0.0 0.4900 0.9586
0.138 18.18 200 0.1374 0.5120 0.8119 0.9643 nan 0.6443 0.9795 0.0 0.5693 0.9668
0.1078 20.0 220 0.1400 0.4541 0.7066 0.9606 nan 0.4271 0.9860 0.0 0.3985 0.9638
0.1426 21.82 240 0.1323 0.4530 0.7053 0.9581 nan 0.4272 0.9834 0.0 0.3978 0.9611
0.3498 23.64 260 0.1338 0.4591 0.7164 0.9595 nan 0.4489 0.9838 0.0 0.4154 0.9618

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3