HorcruxNo13's picture
update model card README.md
5a78cb6
|
raw
history blame
4.15 kB
metadata
license: other
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-toolwear
    results: []

segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2168
  • Mean Iou: 0.3007
  • Mean Accuracy: 0.6014
  • Overall Accuracy: 0.6014
  • Accuracy Unlabeled: nan
  • Accuracy Tool: nan
  • Accuracy Wear: 0.6014
  • Iou Unlabeled: 0.0
  • Iou Tool: nan
  • Iou Wear: 0.6014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Tool Accuracy Wear Iou Unlabeled Iou Tool Iou Wear
0.9147 1.82 20 0.9308 0.3010 0.9029 0.9029 nan nan 0.9029 0.0 0.0 0.9029
0.6788 3.64 40 0.6521 0.2589 0.7768 0.7768 nan nan 0.7768 0.0 0.0 0.7768
0.4559 5.45 60 0.4600 0.2663 0.7989 0.7989 nan nan 0.7989 0.0 0.0 0.7989
0.3799 7.27 80 0.3767 0.2061 0.6182 0.6182 nan nan 0.6182 0.0 0.0 0.6182
0.4438 9.09 100 0.3259 0.3479 0.6958 0.6958 nan nan 0.6958 0.0 nan 0.6958
0.3534 10.91 120 0.3008 0.3057 0.6114 0.6114 nan nan 0.6114 0.0 nan 0.6114
0.3332 12.73 140 0.2805 0.3631 0.7261 0.7261 nan nan 0.7261 0.0 nan 0.7261
0.2543 14.55 160 0.2659 0.2927 0.5853 0.5853 nan nan 0.5853 0.0 nan 0.5853
0.2746 16.36 180 0.2324 0.2724 0.5449 0.5449 nan nan 0.5449 0.0 nan 0.5449
0.2532 18.18 200 0.2409 0.3597 0.7194 0.7194 nan nan 0.7194 0.0 nan 0.7194
0.2353 20.0 220 0.2369 0.3070 0.6139 0.6139 nan nan 0.6139 0.0 nan 0.6139
0.2192 21.82 240 0.2210 0.3041 0.6083 0.6083 nan nan 0.6083 0.0 nan 0.6083
0.2469 23.64 260 0.2168 0.3007 0.6014 0.6014 nan nan 0.6014 0.0 nan 0.6014

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3