Mistral_ei_oc_unstructured_train
This model is a fine-tuned version of mistralai/Mistral-7B-v0.3 on the emollms_ei_oc_unstructured dataset. It achieves the following results on the evaluation set:
- Loss: 0.0787
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4784 | 0.3604 | 10 | 0.1074 |
0.0943 | 0.7207 | 20 | 0.0895 |
0.0763 | 1.0811 | 30 | 0.0837 |
0.0674 | 1.4414 | 40 | 0.0804 |
0.0622 | 1.8018 | 50 | 0.0787 |
0.0596 | 2.1622 | 60 | 0.0804 |
0.0493 | 2.5225 | 70 | 0.0845 |
0.0523 | 2.8829 | 80 | 0.0849 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for Holmeister/Mistral_ei_oc_unstructured_train
Base model
mistralai/Mistral-7B-v0.3