metadata
license: mit
library_name: peft
tags:
- trl
- reward-trainer
- generated_from_trainer
base_model: openai-community/gpt2-large
metrics:
- accuracy
model-index:
- name: >-
RM-HH-GPT2-4w_helpful_gpt3_loraR64_40000_gpt2-large_shuffleTrue_extractchosenFalse
results: []
RM-HH-GPT2-4w_helpful_gpt3_loraR64_40000_gpt2-large_shuffleTrue_extractchosenFalse
This model is a fine-tuned version of openai-community/gpt2-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4920
- Accuracy: 0.7471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6411 | 0.02 | 250 | 0.6110 | 0.6618 |
0.5909 | 0.04 | 500 | 0.5606 | 0.6981 |
0.5266 | 0.06 | 750 | 0.5351 | 0.7134 |
0.5588 | 0.08 | 1000 | 0.5273 | 0.7154 |
0.5328 | 0.1 | 1250 | 0.5219 | 0.7194 |
0.5059 | 0.13 | 1500 | 0.5198 | 0.7252 |
0.5096 | 0.15 | 1750 | 0.5158 | 0.7264 |
0.5212 | 0.17 | 2000 | 0.5152 | 0.7209 |
0.511 | 0.19 | 2250 | 0.5130 | 0.7232 |
0.5286 | 0.21 | 2500 | 0.5098 | 0.7237 |
0.5147 | 0.23 | 2750 | 0.5076 | 0.7267 |
0.4938 | 0.25 | 3000 | 0.5068 | 0.7277 |
0.5279 | 0.27 | 3250 | 0.5040 | 0.7290 |
0.5003 | 0.29 | 3500 | 0.5050 | 0.7303 |
0.5069 | 0.31 | 3750 | 0.5006 | 0.7298 |
0.4992 | 0.33 | 4000 | 0.4987 | 0.7298 |
0.4925 | 0.36 | 4250 | 0.4989 | 0.7347 |
0.4984 | 0.38 | 4500 | 0.4973 | 0.7324 |
0.4995 | 0.4 | 4750 | 0.4956 | 0.7335 |
0.5038 | 0.42 | 5000 | 0.4937 | 0.7341 |
0.4892 | 0.44 | 5250 | 0.4945 | 0.7371 |
0.5017 | 0.46 | 5500 | 0.4942 | 0.7377 |
0.5105 | 0.48 | 5750 | 0.4947 | 0.7377 |
0.4528 | 0.5 | 6000 | 0.4991 | 0.7367 |
0.5055 | 0.52 | 6250 | 0.4999 | 0.7369 |
0.492 | 0.54 | 6500 | 0.4954 | 0.7390 |
0.4632 | 0.57 | 6750 | 0.4991 | 0.7416 |
0.5061 | 0.59 | 7000 | 0.4926 | 0.7412 |
0.4707 | 0.61 | 7250 | 0.4964 | 0.7426 |
0.4728 | 0.63 | 7500 | 0.4948 | 0.7412 |
0.4914 | 0.65 | 7750 | 0.4880 | 0.7437 |
0.4754 | 0.67 | 8000 | 0.4859 | 0.7412 |
0.4875 | 0.69 | 8250 | 0.4924 | 0.7433 |
0.5225 | 0.71 | 8500 | 0.4854 | 0.7437 |
0.5135 | 0.73 | 8750 | 0.4853 | 0.7443 |
0.4589 | 0.75 | 9000 | 0.4921 | 0.7411 |
0.4751 | 0.77 | 9250 | 0.4913 | 0.7412 |
0.4848 | 0.8 | 9500 | 0.4858 | 0.7420 |
0.5003 | 0.82 | 9750 | 0.4837 | 0.7429 |
0.4636 | 0.84 | 10000 | 0.4894 | 0.7429 |
0.493 | 0.86 | 10250 | 0.4845 | 0.7446 |
0.4944 | 0.88 | 10500 | 0.4909 | 0.7424 |
0.487 | 0.9 | 10750 | 0.4872 | 0.7444 |
0.488 | 0.92 | 11000 | 0.4901 | 0.7422 |
0.4622 | 0.94 | 11250 | 0.4863 | 0.7441 |
0.4909 | 0.96 | 11500 | 0.4816 | 0.7433 |
0.4626 | 0.98 | 11750 | 0.4910 | 0.7414 |
0.4911 | 1.0 | 12000 | 0.4913 | 0.7420 |
0.4674 | 1.03 | 12250 | 0.4961 | 0.7456 |
0.4748 | 1.05 | 12500 | 0.4967 | 0.7448 |
0.4693 | 1.07 | 12750 | 0.4975 | 0.7460 |
0.4943 | 1.09 | 13000 | 0.4950 | 0.7454 |
0.4912 | 1.11 | 13250 | 0.4958 | 0.7446 |
0.4845 | 1.13 | 13500 | 0.4977 | 0.7435 |
0.4906 | 1.15 | 13750 | 0.4983 | 0.7444 |
0.4785 | 1.17 | 14000 | 0.4969 | 0.7439 |
0.4546 | 1.19 | 14250 | 0.5068 | 0.7435 |
0.4625 | 1.21 | 14500 | 0.5018 | 0.7435 |
0.5086 | 1.23 | 14750 | 0.4996 | 0.7422 |
0.4574 | 1.26 | 15000 | 0.5048 | 0.7444 |
0.4655 | 1.28 | 15250 | 0.4930 | 0.7454 |
0.4796 | 1.3 | 15500 | 0.4938 | 0.7446 |
0.4924 | 1.32 | 15750 | 0.4830 | 0.7486 |
0.4952 | 1.34 | 16000 | 0.4910 | 0.7471 |
0.4298 | 1.36 | 16250 | 0.4939 | 0.7465 |
0.4324 | 1.38 | 16500 | 0.5072 | 0.7458 |
0.4831 | 1.4 | 16750 | 0.5112 | 0.7454 |
0.5154 | 1.42 | 17000 | 0.5019 | 0.7444 |
0.4629 | 1.44 | 17250 | 0.4982 | 0.7461 |
0.5071 | 1.46 | 17500 | 0.4917 | 0.7443 |
0.4668 | 1.49 | 17750 | 0.4976 | 0.7460 |
0.4871 | 1.51 | 18000 | 0.4884 | 0.7446 |
0.4843 | 1.53 | 18250 | 0.4884 | 0.7448 |
0.4896 | 1.55 | 18500 | 0.4822 | 0.7461 |
0.4483 | 1.57 | 18750 | 0.4855 | 0.7452 |
0.5002 | 1.59 | 19000 | 0.4836 | 0.7469 |
0.4795 | 1.61 | 19250 | 0.4819 | 0.7482 |
0.4611 | 1.63 | 19500 | 0.4821 | 0.7475 |
0.4657 | 1.65 | 19750 | 0.4832 | 0.7478 |
0.492 | 1.67 | 20000 | 0.4808 | 0.7471 |
0.495 | 1.7 | 20250 | 0.4813 | 0.7473 |
0.467 | 1.72 | 20500 | 0.4838 | 0.7482 |
0.4541 | 1.74 | 20750 | 0.4863 | 0.7482 |
0.4823 | 1.76 | 21000 | 0.4887 | 0.7486 |
0.4216 | 1.78 | 21250 | 0.4929 | 0.7469 |
0.46 | 1.8 | 21500 | 0.4920 | 0.7469 |
0.4548 | 1.82 | 21750 | 0.4927 | 0.7471 |
0.4869 | 1.84 | 22000 | 0.4930 | 0.7473 |
0.4919 | 1.86 | 22250 | 0.4927 | 0.7467 |
0.4912 | 1.88 | 22500 | 0.4927 | 0.7461 |
0.4843 | 1.9 | 22750 | 0.4927 | 0.7471 |
0.5049 | 1.93 | 23000 | 0.4922 | 0.7458 |
0.4681 | 1.95 | 23250 | 0.4925 | 0.7463 |
0.4991 | 1.97 | 23500 | 0.4922 | 0.7467 |
0.4893 | 1.99 | 23750 | 0.4920 | 0.7471 |
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2