Hiranmai49's picture
judicial-summarization-llama-3-finetuned_sci-headnotes_maxData
b67b91b verified
|
raw
history blame
1.85 kB
---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
library_name: peft
license: llama3.1
tags:
- trl
- sft
- unsloth
- generated_from_trainer
model-index:
- name: judicial-summarization-llama-3-finetuned_sci-headnotes_maxData
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# judicial-summarization-llama-3-finetuned_sci-headnotes_maxData
This model is a fine-tuned version of [unsloth/meta-llama-3.1-8b-instruct-bnb-4bit](https://huggingface.co./unsloth/meta-llama-3.1-8b-instruct-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6641
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2804 | 1.0 | 726 | 1.3918 |
| 1.392 | 2.0 | 1452 | 1.3744 |
| 1.1555 | 3.0 | 2178 | 1.3951 |
| 0.9796 | 4.0 | 2904 | 1.4558 |
| 0.9031 | 5.0 | 3630 | 1.5524 |
| 0.7454 | 6.0 | 4356 | 1.6641 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1