patrickvonplaten's picture
Add `opus-mt-tc` tag
8f4340c
|
raw
history blame
6.89 kB
metadata
language:
  - be
  - it
  - ru
  - uk
  - zle
tags:
  - translation
  - opus-mt-tc
license: cc-by-4.0
model-index:
  - name: opus-mt-tc-big-zle-it
    results:
      - task:
          name: Translation rus-ita
          type: translation
          args: rus-ita
        dataset:
          name: flores101-devtest
          type: flores_101
          args: rus ita devtest
        metrics:
          - name: BLEU
            type: bleu
            value: 23.7
      - task:
          name: Translation ukr-ita
          type: translation
          args: ukr-ita
        dataset:
          name: flores101-devtest
          type: flores_101
          args: ukr ita devtest
        metrics:
          - name: BLEU
            type: bleu
            value: 23.2
      - task:
          name: Translation bel-ita
          type: translation
          args: bel-ita
        dataset:
          name: tatoeba-test-v2021-08-07
          type: tatoeba_mt
          args: bel-ita
        metrics:
          - name: BLEU
            type: bleu
            value: 49.3
      - task:
          name: Translation rus-ita
          type: translation
          args: rus-ita
        dataset:
          name: tatoeba-test-v2021-08-07
          type: tatoeba_mt
          args: rus-ita
        metrics:
          - name: BLEU
            type: bleu
            value: 43.5
      - task:
          name: Translation ukr-ita
          type: translation
          args: ukr-ita
        dataset:
          name: tatoeba-test-v2021-08-07
          type: tatoeba_mt
          args: ukr-ita
        metrics:
          - name: BLEU
            type: bleu
            value: 50

opus-mt-tc-big-zle-it

Neural machine translation model for translating from East Slavic languages (zle) to Italian (it).

This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train.

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

Model info

Usage

A short example code:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Вони не ідіоти.",
    "Я не хочу идти в банк."
]

model_name = "pytorch-models/opus-mt-tc-big-zle-it"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Non sono idioti.
#     Non voglio andare in banca.

You can also use OPUS-MT models with the transformers pipelines, for example:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-it")
print(pipe("Вони не ідіоти."))

# expected output: Non sono idioti.

Benchmarks

langpair testset chr-F BLEU #sent #words
bel-ita tatoeba-test-v2021-08-07 0.65945 49.3 264 1681
rus-ita tatoeba-test-v2021-08-07 0.64037 43.5 10045 71584
ukr-ita tatoeba-test-v2021-08-07 0.69570 50.0 5000 27846
bel-ita flores101-devtest 0.46311 13.5 1012 27306
rus-ita flores101-devtest 0.53054 23.7 1012 27306
ukr-ita flores101-devtest 0.52783 23.2 1012 27306

Acknowledgements

The work is supported by the European Language Grid as pilot project 2866, by the FoTran project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the MeMAD project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland.

Model conversion info

  • transformers version: 4.16.2
  • OPUS-MT git hash: 1bdabf7
  • port time: Wed Mar 23 23:17:47 EET 2022
  • port machine: LM0-400-22516.local