Add multilingual to the language tag

#5
by lbourdois - opened
Files changed (1) hide show
  1. README.md +16 -18
README.md CHANGED
@@ -2,49 +2,47 @@
2
  language:
3
  - en
4
  - it
 
 
5
  tags:
6
  - translation
7
  - opus-mt-tc
8
- license: cc-by-4.0
9
  model-index:
10
  - name: opus-mt-tc-big-it-en
11
  results:
12
  - task:
13
- name: Translation ita-eng
14
  type: translation
15
- args: ita-eng
16
  dataset:
17
  name: flores101-devtest
18
  type: flores_101
19
  args: ita eng devtest
20
  metrics:
21
- - name: BLEU
22
- type: bleu
23
  value: 32.8
 
24
  - task:
25
- name: Translation ita-eng
26
  type: translation
27
- args: ita-eng
28
  dataset:
29
  name: tatoeba-test-v2021-08-07
30
  type: tatoeba_mt
31
  args: ita-eng
32
  metrics:
33
- - name: BLEU
34
- type: bleu
35
  value: 72.1
 
36
  - task:
37
- name: Translation ita-eng
38
  type: translation
39
- args: ita-eng
40
  dataset:
41
  name: newstest2009
42
  type: wmt-2009-news
43
  args: ita-eng
44
  metrics:
45
- - name: BLEU
46
- type: bleu
47
  value: 34.3
 
48
  ---
49
  # opus-mt-tc-big-it-en
50
 
@@ -52,7 +50,7 @@ Neural machine translation model for translating from Italian (it) to English (e
52
 
53
  This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
54
 
55
- * Publications: [OPUS-MT Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
56
 
57
  ```
58
  @inproceedings{tiedemann-thottingal-2020-opus,
@@ -99,8 +97,8 @@ A short example code:
99
  from transformers import MarianMTModel, MarianTokenizer
100
 
101
  src_text = [
102
- "So chi è il mio nemico.",
103
- "Tom è illetterato; non capisce assolutamente nulla."
104
  ]
105
 
106
  model_name = "pytorch-models/opus-mt-tc-big-it-en"
@@ -121,7 +119,7 @@ You can also use OPUS-MT models with the transformers pipelines, for example:
121
  ```python
122
  from transformers import pipeline
123
  pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-it-en")
124
- print(pipe("So chi è il mio nemico."))
125
 
126
  # expected output: I know who my enemy is.
127
  ```
@@ -142,7 +140,7 @@ print(pipe("So chi è il mio nemico."))
142
 
143
  ## Acknowledgements
144
 
145
- The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
146
 
147
  ## Model conversion info
148
 
 
2
  language:
3
  - en
4
  - it
5
+ - multilingual
6
+ license: cc-by-4.0
7
  tags:
8
  - translation
9
  - opus-mt-tc
 
10
  model-index:
11
  - name: opus-mt-tc-big-it-en
12
  results:
13
  - task:
 
14
  type: translation
15
+ name: Translation ita-eng
16
  dataset:
17
  name: flores101-devtest
18
  type: flores_101
19
  args: ita eng devtest
20
  metrics:
21
+ - type: bleu
 
22
  value: 32.8
23
+ name: BLEU
24
  - task:
 
25
  type: translation
26
+ name: Translation ita-eng
27
  dataset:
28
  name: tatoeba-test-v2021-08-07
29
  type: tatoeba_mt
30
  args: ita-eng
31
  metrics:
32
+ - type: bleu
 
33
  value: 72.1
34
+ name: BLEU
35
  - task:
 
36
  type: translation
37
+ name: Translation ita-eng
38
  dataset:
39
  name: newstest2009
40
  type: wmt-2009-news
41
  args: ita-eng
42
  metrics:
43
+ - type: bleu
 
44
  value: 34.3
45
+ name: BLEU
46
  ---
47
  # opus-mt-tc-big-it-en
48
 
 
50
 
51
  This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
52
 
53
+ * Publications: [OPUS-MT Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
54
 
55
  ```
56
  @inproceedings{tiedemann-thottingal-2020-opus,
 
97
  from transformers import MarianMTModel, MarianTokenizer
98
 
99
  src_text = [
100
+ "So chi il mio nemico.",
101
+ "Tom illetterato; non capisce assolutamente nulla."
102
  ]
103
 
104
  model_name = "pytorch-models/opus-mt-tc-big-it-en"
 
119
  ```python
120
  from transformers import pipeline
121
  pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-it-en")
122
+ print(pipe("So chi il mio nemico."))
123
 
124
  # expected output: I know who my enemy is.
125
  ```
 
140
 
141
  ## Acknowledgements
142
 
143
+ The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
144
 
145
  ## Model conversion info
146