tiedeman's picture
Initial commit
b6037b3
|
raw
history blame
10.4 kB
metadata
language:
  - fa
  - fr
  - pt
  - ro
tags:
  - translation
  - opus-mt-tc
license: cc-by-4.0
model-index:
  - name: opus-mt-tc-big-fa-itc
    results:
      - task:
          name: Translation fas-fra
          type: translation
          args: fas-fra
        dataset:
          name: flores101-devtest
          type: flores_101
          args: fas fra devtest
        metrics:
          - name: BLEU
            type: bleu
            value: 28.9
          - name: chr-F
            type: chrf
            value: 0.55883
      - task:
          name: Translation fas-ita
          type: translation
          args: fas-ita
        dataset:
          name: flores101-devtest
          type: flores_101
          args: fas ita devtest
        metrics:
          - name: BLEU
            type: bleu
            value: 19.7
          - name: chr-F
            type: chrf
            value: 0.49512
      - task:
          name: Translation fas-por
          type: translation
          args: fas-por
        dataset:
          name: flores101-devtest
          type: flores_101
          args: fas por devtest
        metrics:
          - name: BLEU
            type: bleu
            value: 27.6
          - name: chr-F
            type: chrf
            value: 0.54829
      - task:
          name: Translation fas-ron
          type: translation
          args: fas-ron
        dataset:
          name: flores101-devtest
          type: flores_101
          args: fas ron devtest
        metrics:
          - name: BLEU
            type: bleu
            value: 19.7
          - name: chr-F
            type: chrf
            value: 0.48821
      - task:
          name: Translation fas-spa
          type: translation
          args: fas-spa
        dataset:
          name: flores101-devtest
          type: flores_101
          args: fas spa devtest
        metrics:
          - name: BLEU
            type: bleu
            value: 19.4
          - name: chr-F
            type: chrf
            value: 0.47722
      - task:
          name: Translation fas-fra
          type: translation
          args: fas-fra
        dataset:
          name: tatoeba-test-v2021-08-07
          type: tatoeba_mt
          args: fas-fra
        metrics:
          - name: BLEU
            type: bleu
            value: 37.5
          - name: chr-F
            type: chrf
            value: 0.57949

opus-mt-tc-big-fa-itc

Table of Contents

Model Details

Neural machine translation model for translating from Persian (fa) to Italic languages (itc).

This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train. Model Description:

  • Developed by: Language Technology Research Group at the University of Helsinki
  • Model Type: Translation (transformer-big)
  • Release: 2022-07-23
  • License: CC-BY-4.0
  • Language(s):
    • Source Language(s): fas
    • Target Language(s): fra ita por ron spa
    • Language Pair(s): fas-fra fas-por fas-ron
    • Valid Target Language Labels: >>acf<< >>aoa<< >>arg<< >>ast<< >>cat<< >>cbk<< >>ccd<< >>cks<< >>cos<< >>cri<< >>crs<< >>dlm<< >>drc<< >>egl<< >>ext<< >>fab<< >>fax<< >>fra<< >>frc<< >>frm<< >>fro<< >>frp<< >>fur<< >>gcf<< >>gcr<< >>glg<< >>hat<< >>idb<< >>ist<< >>ita<< >>itk<< >>kea<< >>kmv<< >>lad<< >>lad_Latn<< >>lat<< >>lat_Latn<< >>lij<< >>lld<< >>lmo<< >>lou<< >>mcm<< >>mfe<< >>mol<< >>mwl<< >>mxi<< >>mzs<< >>nap<< >>nrf<< >>oci<< >>osc<< >>osp<< >>pap<< >>pcd<< >>pln<< >>pms<< >>pob<< >>por<< >>pov<< >>pre<< >>pro<< >>qbb<< >>qhr<< >>rcf<< >>rgn<< >>roh<< >>ron<< >>ruo<< >>rup<< >>ruq<< >>scf<< >>scn<< >>sdc<< >>sdn<< >>spa<< >>spq<< >>spx<< >>src<< >>srd<< >>sro<< >>tmg<< >>tvy<< >>vec<< >>vkp<< >>wln<< >>xfa<< >>xum<<
  • Original Model: opusTCv20210807_transformer-big_2022-07-23.zip
  • Resources for more information:

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of >>id<< (id = valid target language ID), e.g. >>fra<<

Uses

This model can be used for translation and text-to-text generation.

Risks, Limitations and Biases

CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.

Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)).

How to Get Started With the Model

A short example code:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>lad<< اسلام زیباست.",
    ">>spa<< ورود به کتابخانه رایگان است."
]

model_name = "pytorch-models/opus-mt-tc-big-fa-itc"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     O Islam é lindo.
#     La entrada a la biblioteca es gratuita.

You can also use OPUS-MT models with the transformers pipelines, for example:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fa-itc")
print(pipe(">>lad<< اسلام زیباست."))

# expected output: O Islam é lindo.

Training

Evaluation

langpair testset chr-F BLEU #sent #words
fas-fra tatoeba-test-v2021-08-07 0.57949 37.5 376 3377
fas-fra flores101-devtest 0.55883 28.9 1012 28343
fas-ita flores101-devtest 0.49512 19.7 1012 27306
fas-por flores101-devtest 0.54829 27.6 1012 26519
fas-ron flores101-devtest 0.48821 19.7 1012 26799
fas-spa flores101-devtest 0.47722 19.4 1012 29199

Citation Information

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

Acknowledgements

The work is supported by the European Language Grid as pilot project 2866, by the FoTran project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the MeMAD project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland.

Model conversion info

  • transformers version: 4.16.2
  • OPUS-MT git hash: 8b9f0b0
  • port time: Sat Aug 13 00:08:53 EEST 2022
  • port machine: LM0-400-22516.local