Edit model card

Hebrew Conclusion Extraction Model (based on sequence plus context classification)

How to use

from transformers import  RobertaTokenizerFast, AutoModelForSequenceClassification
from datasets  import load_dataset, Dataset
from functools import partial
from tqdm.auto import tqdm
tqdm._instances.clear()

def tokenize_function(example):
    inputs = tokenizer(
        example["sentence"],
        example["context"],
        max_length=512,
        truncation=True,
        padding="max_length",
    )
    return inputs

def create_windowed_context_ds(context_l, example, idx):
    example["context"] = context_l[idx]
    return example

def create_windowed_context(raw_dataset, window_size):
    df_pandas = raw_dataset['train'].to_pandas()
    len1 = len(raw_dataset['train'])
    context_l = []
    for i in tqdm(range(len1)):
        if i - window_size <0:
            context_l.append(' '.join(df_pandas['sentence'][0:window_size]))
        else:
            if i + window_size > len1 :
                context_l.append(' '.join(df_pandas['sentence'][i - window_size:-1]))
            else:
                context_l.append(' '.join(df_pandas['sentence'][i - window_size:i + window_size]))
    return context_l

model = AutoModelForSequenceClassification.from_pretrained('HeTree/HeConEspc', num_labels=2)
tokenizer = RobertaTokenizerFast.from_pretrained('HeTree/HeConEspc')
raw_dataset = load_dataset('HeTree/MevakerConcSen')
window_size = 5
context_l = create_windowed_context(raw_dataset, window_size)
raw_dataset_window = raw_dataset.map(partial(create_windowed_context_ds, context_l), batched=False, with_indices=True)
tokenized_data = raw_dataset_window.map(tokenize_function, batched=True)

Citing

If you use HeConEspc in your research, please cite Mevaker: Conclusion Extraction and Allocation Resources for the Hebrew Language.

@article{shalumov2024mevaker,
      title={Mevaker: Conclusion Extraction and Allocation Resources for the Hebrew Language}, 
      author={Vitaly Shalumov and Harel Haskey and Yuval Solaz},
      year={2024},
      eprint={2403.09719},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
16
Safetensors
Model size
125M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train HeTree/HeConEspc