HaythamB's picture
End of training
21bb34c verified
---
library_name: transformers
license: apache-2.0
base_model: MariaK/distilhubert-finetuned-gtzan-v2
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-v2-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.9555555555555556
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan-v2-finetuned-gtzan
This model is a fine-tuned version of [MariaK/distilhubert-finetuned-gtzan-v2](https://huggingface.co./MariaK/distilhubert-finetuned-gtzan-v2) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1561
- Accuracy: 0.9556
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1145 | 1.0 | 51 | 0.1565 | 0.9556 |
| 0.0774 | 2.0 | 102 | 0.1561 | 0.9556 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3