BEiT_beit-base-finetuned-ade-640-640_Clean-Set1_RGB

This model is a fine-tuned version of microsoft/beit-base-finetuned-ade-640-640 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0603
  • Mean Iou: 0.9672
  • Mean Accuracy: 0.9774
  • Overall Accuracy: 0.9930
  • Accuracy Background: 0.9961
  • Accuracy Melt: 0.9392
  • Accuracy Substrate: 0.9971
  • Iou Background: 0.9929
  • Iou Melt: 0.9207
  • Iou Substrate: 0.9879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Melt Accuracy Substrate Iou Background Iou Melt Iou Substrate
0.3924 5.5556 50 0.3038 0.9022 0.9499 0.9809 0.9854 0.8738 0.9906 0.9853 0.7493 0.9719
0.0857 11.1111 100 0.0788 0.9656 0.9771 0.9931 0.9972 0.9377 0.9964 0.9939 0.9146 0.9883
0.0816 16.6667 150 0.0603 0.9672 0.9774 0.9930 0.9961 0.9392 0.9971 0.9929 0.9207 0.9879

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
163M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hasano20/BEiT_beit-base-finetuned-ade-640-640_Clean-Set1_RGB

Finetuned
(5)
this model