Automatic correction of README.md metadata for keys. Contact [email protected] for any question
0bd7c7d
language: ta | |
#datasets: | |
#- Interspeech 2021 | |
metrics: | |
- wer | |
tags: | |
- audio | |
- automatic-speech-recognition | |
- speech | |
license: mit | |
model-index: | |
- name: Wav2Vec2 Vakyansh Tamil Model by Harveen Chadha | |
results: | |
- task: | |
name: Speech Recognition | |
type: automatic-speech-recognition | |
dataset: | |
name: Common Voice ta | |
type: common_voice | |
args: ta | |
metrics: | |
- name: Test WER | |
type: wer | |
value: 53.64 | |
## Pretrained Model | |
Fine-tuned on Multilingual Pretrained Model [CLSRIL-23](https://arxiv.org/abs/2107.07402). The original fairseq checkpoint is present [here](https://github.com/Open-Speech-EkStep/vakyansh-models). When using this model, make sure that your speech input is sampled at 16kHz. | |
**Note: The result from this model is without a language model so you may witness a higher WER in some cases.** | |
## Dataset | |
This model was trained on 4200 hours of Hindi Labelled Data. The labelled data is not present in public domain as of now. | |
## Training Script | |
Models were trained using experimental platform setup by Vakyansh team at Ekstep. Here is the [training repository](https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation). | |
In case you want to explore training logs on wandb they are [here](https://wandb.ai/harveenchadha/tamil-finetuning-multilingual). | |
## [Colab Demo](https://github.com/harveenchadha/bol/blob/main/demos/hf/tamil/hf_tamil_tnm_4200_demo.ipynb) | |
## Usage | |
The model can be used directly (without a language model) as follows: | |
```python | |
import soundfile as sf | |
import torch | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import argparse | |
def parse_transcription(wav_file): | |
# load pretrained model | |
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250") | |
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250") | |
# load audio | |
audio_input, sample_rate = sf.read(wav_file) | |
# pad input values and return pt tensor | |
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values | |
# INFERENCE | |
# retrieve logits & take argmax | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
# transcribe | |
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) | |
print(transcription) | |
``` | |
## Evaluation | |
The model can be evaluated as follows on the hindi test data of Common Voice. | |
```python | |
import torch | |
import torchaudio | |
from datasets import load_dataset, load_metric | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import re | |
test_dataset = load_dataset("common_voice", "ta", split="test") | |
wer = load_metric("wer") | |
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250") | |
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250") | |
model.to("cuda") | |
resampler = torchaudio.transforms.Resample(48_000, 16_000) | |
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' | |
# Preprocessing the datasets. | |
# We need to read the aduio files as arrays | |
def speech_file_to_array_fn(batch): | |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() | |
speech_array, sampling_rate = torchaudio.load(batch["path"]) | |
batch["speech"] = resampler(speech_array).squeeze().numpy() | |
return batch | |
test_dataset = test_dataset.map(speech_file_to_array_fn) | |
# Preprocessing the datasets. | |
# We need to read the aduio files as arrays | |
def evaluate(batch): | |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(inputs.input_values.to("cuda")).logits | |
pred_ids = torch.argmax(logits, dim=-1) | |
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True) | |
return batch | |
result = test_dataset.map(evaluate, batched=True, batch_size=8) | |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) | |
``` | |
**Test Result**: 53.64 % | |
[**Colab Evaluation**](https://github.com/harveenchadha/bol/blob/main/demos/hf/tamil/hf_vakyansh_tamil_tnm_4200_evaluation_common_voice.ipynb) | |
## Credits | |
Thanks to Ekstep Foundation for making this possible. The vakyansh team will be open sourcing speech models in all the Indic Languages. |