Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: google/gemma-2b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: Harsh1729/hotpotqa_uncertain
    type: alpaca
    split: train
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./hotpotqa_uncertain-qlora-out
hub_model_id: Harsh1729/gemma2b-hotpotqa_uncertain-v1

adapter: qlora
lora_model_dir:

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16: 
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.02 
evals_per_epoch: 1
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: # deepspeed_configs/zero2.json # multi-gpu only
weight_decay: 0.1
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 0.00000001
max_grad_norm: 1.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

gemma2b-hotpotqa_uncertain-v1

This model is a fine-tuned version of google/gemma-2b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 59
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.0391 1.0 3675 0.3151

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.0
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Harsh1729/gemma2b-hotpotqa_uncertain-v1

Base model

google/gemma-2b
Adapter
(23294)
this model