Timeseries Multimodal Model
Collection
4 items
•
Updated
Mists(Mistral Time Series) is a multimodal model that combines language and time series model.
This model is based on the following models:
This is an experimental model. Since the adapter has not been trained, the model is not yet suitable for use.
!pip install accelerate
from transformers import AutoProcessor, AutoModel
import torch
model_id = "HachiML/Mists-7B-v01-not-trained"
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
model = AutoModel.from_pretrained(
model_id,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
device_map="auto",
trust_remote_code=True,
)
import pandas as pd
import torch
hist_ndaq = pd.DataFrame("nasdaq_price_history.csv")
time_series_data = hist_ndaq[["Open", "High", "Low", "Close", "Volume"]].iloc[:512]
prompt = "USER: <time_series>\nWhat are the features of this data?\nASSISTANT:"
inputs = processor(prompt, time_series_data, return_tensors='pt')
device = "cuda" if torch.cuda.is_available() else "cpu"
for key, item in inputs.items():
inputs[key] = inputs[key].to(device)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0], skip_special_tokens=False))