File size: 2,568 Bytes
33e3875 ef3d7c5 5c0bedd ef3d7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: apache-2.0
---
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU).
It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co./hardware/habana).
## Stable Diffusion HPU configuration
This model only contains the `GaudiConfig` file for running **Stable Diffusion 1** (e.g. [CompVis/stable-diffusion-v1-4](https://huggingface.co./CompVis/stable-diffusion-v1-4)) or **Stable Diffusion 2** (e.g. [stabilityai/stable-diffusion-2](https://huggingface.co./stabilityai/stable-diffusion-2)) on Habana's Gaudi processors (HPU).
**This model contains no model weights, only a GaudiConfig.**
This enables to specify:
- `use_habana_mixed_precision`: whether to use Habana Mixed Precision (HMP)
- `hmp_opt_level`: optimization level for HMP, see [here](https://docs.habana.ai/en/latest/PyTorch/PyTorch_Mixed_Precision/PT_Mixed_Precision.html#configuration-options) for a detailed explanation
- `hmp_bf16_ops`: list of operators that should run in bf16
- `hmp_fp32_ops`: list of operators that should run in fp32
- `hmp_is_verbose`: verbosity
## Usage
The `GaudiStableDiffusionPipeline` (`GaudiDDIMScheduler`) is instantiated the same way as the `StableDiffusionPipeline` (`DDIMScheduler`) in the 🤗 Diffusers library.
The only difference is that there are a few new training arguments specific to HPUs.
Here is an example with one prompt:
```python
from optimum.habana import GaudiConfig
from optimum.habana.diffusers import GaudiDDIMScheduler, GaudiStableDiffusionPipeline
model_name = "stabilityai/stable-diffusion-2"
scheduler = GaudiDDIMScheduler.from_pretrained(model_name, subfolder="scheduler")
pipeline = GaudiStableDiffusionPipeline.from_pretrained(
model_name,
scheduler=scheduler,
use_habana=True,
use_hpu_graphs=True,
gaudi_config="Habana/stable-diffusion",
)
outputs = generator(
["An image of a squirrel in Picasso style"],
num_images_per_prompt=16,
batch_size=4,
)
```
Check out the [documentation](https://huggingface.co./docs/optimum/habana/usage_guides/stable_diffusion) and [this example](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion) for more advanced usage.
|