|
[04/17 14:10:02 detectron2]: Rank of current process: 0. World size: 8 |
|
[04/17 14:10:20 detectron2]: Environment info: |
|
---------------------- -------------------------------------------------------------------------------------------------------------------------- |
|
sys.platform linux |
|
Python 3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0] |
|
numpy 1.21.5 |
|
detectron2 0.6 @/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2 |
|
Compiler GCC 7.3 |
|
CUDA compiler CUDA 11.1 |
|
detectron2 arch flags 3.7, 5.0, 5.2, 6.0, 6.1, 7.0, 7.5, 8.0, 8.6 |
|
DETECTRON2_ENV_MODULE <not set> |
|
PyTorch 1.10.0+cu111 @/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch |
|
PyTorch debug build False |
|
GPU available Yes |
|
GPU 0,1,2,3,4,5,6,7 A100-SXM4-40GB (arch=8.0) |
|
Driver version 450.142.00 |
|
CUDA_HOME /usr/local/cuda |
|
Pillow 8.4.0 |
|
torchvision 0.11.1+cu111 @/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torchvision |
|
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6 |
|
fvcore 0.1.5.post20211023 |
|
iopath 0.1.9 |
|
cv2 Not found |
|
---------------------- -------------------------------------------------------------------------------------------------------------------------- |
|
PyTorch built with: |
|
- GCC 7.3 |
|
- C++ Version: 201402 |
|
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications |
|
- Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740) |
|
- OpenMP 201511 (a.k.a. OpenMP 4.5) |
|
- LAPACK is enabled (usually provided by MKL) |
|
- NNPACK is enabled |
|
- CPU capability usage: AVX2 |
|
- CUDA Runtime 11.1 |
|
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86 |
|
- CuDNN 8.0.5 |
|
- Magma 2.5.2 |
|
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, |
|
|
|
[04/17 14:10:20 detectron2]: Command line arguments: Namespace(config_file='cascade_layoutlmv3.yaml', debug=False, dist_url='tcp://127.0.0.1:50156', eval_only=True, machine_rank=0, num_gpus=8, num_machines=1, opts=['MODEL.WEIGHTS', '/mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/model_final.pth', 'OUTPUT_DIR', '/mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/'], resume=False) |
|
[04/17 14:10:20 detectron2]: Contents of args.config_file=cascade_layoutlmv3.yaml: |
|
MODEL: |
|
MASK_ON: True |
|
MAX_LENGTH: 510 |
|
IMAGE_ONLY: True |
|
META_ARCHITECTURE: "VLGeneralizedRCNN" |
|
PIXEL_MEAN: [ 127.5, 127.5, 127.5 ] |
|
PIXEL_STD: [ 127.5, 127.5, 127.5 ] |
|
WEIGHTS: "/mnt/localdata/users/yupanhuang/models/layoutlmv3/pts/layoutlmv3-base/pytorch_model.bin" |
|
BACKBONE: |
|
NAME: "build_vit_fpn_backbone" |
|
VIT: |
|
NAME: "layoutlmv3_base" |
|
OUT_FEATURES: [ "layer3", "layer5", "layer7", "layer11" ] |
|
DROP_PATH: 0.1 |
|
IMG_SIZE: [ 224,224 ] |
|
POS_TYPE: "abs" |
|
ROI_HEADS: |
|
NAME: CascadeROIHeads |
|
IN_FEATURES: [ "p2", "p3", "p4", "p5" ] |
|
NUM_CLASSES: 5 |
|
ROI_BOX_HEAD: |
|
CLS_AGNOSTIC_BBOX_REG: True |
|
NAME: "FastRCNNConvFCHead" |
|
NUM_FC: 2 |
|
POOLER_RESOLUTION: 7 |
|
ROI_MASK_HEAD: |
|
NAME: "MaskRCNNConvUpsampleHead" |
|
NUM_CONV: 4 |
|
POOLER_RESOLUTION: 14 |
|
FPN: |
|
IN_FEATURES: [ "layer3", "layer5", "layer7", "layer11" ] |
|
ANCHOR_GENERATOR: |
|
SIZES: [ [ 32 ], [ 64 ], [ 128 ], [ 256 ], [ 512 ] ] # One size for each in feature map |
|
ASPECT_RATIOS: [ [ 0.5, 1.0, 2.0 ] ] # Three aspect ratios (same for all in feature maps) |
|
RPN: |
|
IN_FEATURES: [ "p2", "p3", "p4", "p5", "p6" ] |
|
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level |
|
PRE_NMS_TOPK_TEST: 1000 # Per FPN level |
|
# Detectron1 uses 2000 proposals per-batch, |
|
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue) |
|
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2. |
|
POST_NMS_TOPK_TRAIN: 2000 |
|
POST_NMS_TOPK_TEST: 1000 |
|
DATASETS: |
|
TRAIN: ("publaynet_train",) |
|
TEST: ("publaynet_val",) |
|
SOLVER: |
|
GRADIENT_ACCUMULATION_STEPS: 1 |
|
BASE_LR: 0.0002 |
|
WARMUP_ITERS: 1000 |
|
IMS_PER_BATCH: 32 |
|
MAX_ITER: 60000 |
|
CHECKPOINT_PERIOD: 2000 |
|
LR_SCHEDULER_NAME: "WarmupCosineLR" |
|
AMP: |
|
ENABLED: True |
|
OPTIMIZER: "ADAMW" |
|
BACKBONE_MULTIPLIER: 1.0 |
|
CLIP_GRADIENTS: |
|
ENABLED: True |
|
CLIP_TYPE: "full_model" |
|
CLIP_VALUE: 1.0 |
|
NORM_TYPE: 2.0 |
|
WARMUP_FACTOR: 0.01 |
|
WEIGHT_DECAY: 0.05 |
|
TEST: |
|
EVAL_PERIOD: 2000 |
|
INPUT: |
|
CROP: |
|
ENABLED: True |
|
TYPE: "absolute_range" |
|
SIZE: (384, 600) |
|
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800) |
|
FORMAT: "RGB" |
|
DATALOADER: |
|
FILTER_EMPTY_ANNOTATIONS: False |
|
VERSION: 2 |
|
AUG: |
|
DETR: True |
|
SEED: 42 |
|
OUTPUT_DIR: "/mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet/" |
|
PUBLAYNET_DATA_DIR_TRAIN: "/mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/train" |
|
PUBLAYNET_DATA_DIR_TEST: "/mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/val" |
|
OCR_DATA_DIR_TRAIN: "/mnt/localdata/users/yupanhuang/data/PubLayNet/ocr/train" |
|
OCR_DATA_DIR_TEST: "/mnt/localdata/users/yupanhuang/data/PubLayNet/ocr/val" |
|
CACHE_DIR: "/mnt/localdata/users/yupanhuang/cache/huggingface" |
|
|
|
[04/17 14:10:20 detectron2]: Running with full config: |
|
AUG: |
|
DETR: true |
|
CACHE_DIR: /mnt/localdata/users/yupanhuang/cache/huggingface |
|
CUDNN_BENCHMARK: false |
|
DATALOADER: |
|
ASPECT_RATIO_GROUPING: true |
|
FILTER_EMPTY_ANNOTATIONS: false |
|
NUM_WORKERS: 4 |
|
REPEAT_THRESHOLD: 0.0 |
|
SAMPLER_TRAIN: TrainingSampler |
|
DATASETS: |
|
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 |
|
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 |
|
PROPOSAL_FILES_TEST: [] |
|
PROPOSAL_FILES_TRAIN: [] |
|
TEST: |
|
- publaynet_val |
|
TRAIN: |
|
- publaynet_train |
|
GLOBAL: |
|
HACK: 1.0 |
|
ICDAR_DATA_DIR_TEST: '' |
|
ICDAR_DATA_DIR_TRAIN: '' |
|
INPUT: |
|
CROP: |
|
ENABLED: true |
|
SIZE: |
|
- 384 |
|
- 600 |
|
TYPE: absolute_range |
|
FORMAT: RGB |
|
MASK_FORMAT: polygon |
|
MAX_SIZE_TEST: 1333 |
|
MAX_SIZE_TRAIN: 1333 |
|
MIN_SIZE_TEST: 800 |
|
MIN_SIZE_TRAIN: |
|
- 480 |
|
- 512 |
|
- 544 |
|
- 576 |
|
- 608 |
|
- 640 |
|
- 672 |
|
- 704 |
|
- 736 |
|
- 768 |
|
- 800 |
|
MIN_SIZE_TRAIN_SAMPLING: choice |
|
RANDOM_FLIP: horizontal |
|
MODEL: |
|
ANCHOR_GENERATOR: |
|
ANGLES: |
|
- - -90 |
|
- 0 |
|
- 90 |
|
ASPECT_RATIOS: |
|
- - 0.5 |
|
- 1.0 |
|
- 2.0 |
|
NAME: DefaultAnchorGenerator |
|
OFFSET: 0.0 |
|
SIZES: |
|
- - 32 |
|
- - 64 |
|
- - 128 |
|
- - 256 |
|
- - 512 |
|
BACKBONE: |
|
FREEZE_AT: 2 |
|
NAME: build_vit_fpn_backbone |
|
CONFIG_PATH: '' |
|
DEVICE: cuda |
|
FPN: |
|
FUSE_TYPE: sum |
|
IN_FEATURES: |
|
- layer3 |
|
- layer5 |
|
- layer7 |
|
- layer11 |
|
NORM: '' |
|
OUT_CHANNELS: 256 |
|
IMAGE_ONLY: true |
|
KEYPOINT_ON: false |
|
LOAD_PROPOSALS: false |
|
MASK_ON: true |
|
MAX_LENGTH: 510 |
|
META_ARCHITECTURE: VLGeneralizedRCNN |
|
PANOPTIC_FPN: |
|
COMBINE: |
|
ENABLED: true |
|
INSTANCES_CONFIDENCE_THRESH: 0.5 |
|
OVERLAP_THRESH: 0.5 |
|
STUFF_AREA_LIMIT: 4096 |
|
INSTANCE_LOSS_WEIGHT: 1.0 |
|
PIXEL_MEAN: |
|
- 127.5 |
|
- 127.5 |
|
- 127.5 |
|
PIXEL_STD: |
|
- 127.5 |
|
- 127.5 |
|
- 127.5 |
|
PROPOSAL_GENERATOR: |
|
MIN_SIZE: 0 |
|
NAME: RPN |
|
RESNETS: |
|
DEFORM_MODULATED: false |
|
DEFORM_NUM_GROUPS: 1 |
|
DEFORM_ON_PER_STAGE: |
|
- false |
|
- false |
|
- false |
|
- false |
|
DEPTH: 50 |
|
NORM: FrozenBN |
|
NUM_GROUPS: 1 |
|
OUT_FEATURES: |
|
- res4 |
|
RES2_OUT_CHANNELS: 256 |
|
RES5_DILATION: 1 |
|
STEM_OUT_CHANNELS: 64 |
|
STRIDE_IN_1X1: true |
|
WIDTH_PER_GROUP: 64 |
|
RETINANET: |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_WEIGHTS: &id001 |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
FOCAL_LOSS_ALPHA: 0.25 |
|
FOCAL_LOSS_GAMMA: 2.0 |
|
IN_FEATURES: |
|
- p3 |
|
- p4 |
|
- p5 |
|
- p6 |
|
- p7 |
|
IOU_LABELS: |
|
- 0 |
|
- -1 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.4 |
|
- 0.5 |
|
NMS_THRESH_TEST: 0.5 |
|
NORM: '' |
|
NUM_CLASSES: 80 |
|
NUM_CONVS: 4 |
|
PRIOR_PROB: 0.01 |
|
SCORE_THRESH_TEST: 0.05 |
|
SMOOTH_L1_LOSS_BETA: 0.1 |
|
TOPK_CANDIDATES_TEST: 1000 |
|
ROI_BOX_CASCADE_HEAD: |
|
BBOX_REG_WEIGHTS: |
|
- - 10.0 |
|
- 10.0 |
|
- 5.0 |
|
- 5.0 |
|
- - 20.0 |
|
- 20.0 |
|
- 10.0 |
|
- 10.0 |
|
- - 30.0 |
|
- 30.0 |
|
- 15.0 |
|
- 15.0 |
|
IOUS: |
|
- 0.5 |
|
- 0.6 |
|
- 0.7 |
|
ROI_BOX_HEAD: |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_LOSS_WEIGHT: 1.0 |
|
BBOX_REG_WEIGHTS: |
|
- 10.0 |
|
- 10.0 |
|
- 5.0 |
|
- 5.0 |
|
CLS_AGNOSTIC_BBOX_REG: true |
|
CONV_DIM: 256 |
|
FC_DIM: 1024 |
|
NAME: FastRCNNConvFCHead |
|
NORM: '' |
|
NUM_CONV: 0 |
|
NUM_FC: 2 |
|
POOLER_RESOLUTION: 7 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
SMOOTH_L1_BETA: 0.0 |
|
TRAIN_ON_PRED_BOXES: false |
|
ROI_HEADS: |
|
BATCH_SIZE_PER_IMAGE: 512 |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
IOU_LABELS: |
|
- 0 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.5 |
|
NAME: CascadeROIHeads |
|
NMS_THRESH_TEST: 0.5 |
|
NUM_CLASSES: 5 |
|
POSITIVE_FRACTION: 0.25 |
|
PROPOSAL_APPEND_GT: true |
|
SCORE_THRESH_TEST: 0.05 |
|
ROI_KEYPOINT_HEAD: |
|
CONV_DIMS: |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
- 512 |
|
LOSS_WEIGHT: 1.0 |
|
MIN_KEYPOINTS_PER_IMAGE: 1 |
|
NAME: KRCNNConvDeconvUpsampleHead |
|
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true |
|
NUM_KEYPOINTS: 17 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
ROI_MASK_HEAD: |
|
CLS_AGNOSTIC_MASK: false |
|
CONV_DIM: 256 |
|
NAME: MaskRCNNConvUpsampleHead |
|
NORM: '' |
|
NUM_CONV: 4 |
|
POOLER_RESOLUTION: 14 |
|
POOLER_SAMPLING_RATIO: 0 |
|
POOLER_TYPE: ROIAlignV2 |
|
RPN: |
|
BATCH_SIZE_PER_IMAGE: 256 |
|
BBOX_REG_LOSS_TYPE: smooth_l1 |
|
BBOX_REG_LOSS_WEIGHT: 1.0 |
|
BBOX_REG_WEIGHTS: *id001 |
|
BOUNDARY_THRESH: -1 |
|
CONV_DIMS: |
|
- -1 |
|
HEAD_NAME: StandardRPNHead |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
- p6 |
|
IOU_LABELS: |
|
- 0 |
|
- -1 |
|
- 1 |
|
IOU_THRESHOLDS: |
|
- 0.3 |
|
- 0.7 |
|
LOSS_WEIGHT: 1.0 |
|
NMS_THRESH: 0.7 |
|
POSITIVE_FRACTION: 0.5 |
|
POST_NMS_TOPK_TEST: 1000 |
|
POST_NMS_TOPK_TRAIN: 2000 |
|
PRE_NMS_TOPK_TEST: 1000 |
|
PRE_NMS_TOPK_TRAIN: 2000 |
|
SMOOTH_L1_BETA: 0.0 |
|
SEM_SEG_HEAD: |
|
COMMON_STRIDE: 4 |
|
CONVS_DIM: 128 |
|
IGNORE_VALUE: 255 |
|
IN_FEATURES: |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
LOSS_WEIGHT: 1.0 |
|
NAME: SemSegFPNHead |
|
NORM: GN |
|
NUM_CLASSES: 54 |
|
VIT: |
|
DROP_PATH: 0.1 |
|
IMG_SIZE: |
|
- 224 |
|
- 224 |
|
MODEL_KWARGS: '{}' |
|
NAME: layoutlmv3_base |
|
OUT_FEATURES: |
|
- layer3 |
|
- layer5 |
|
- layer7 |
|
- layer11 |
|
POS_TYPE: abs |
|
WEIGHTS: /mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/model_final.pth |
|
OCR_DATA_DIR_TEST: /mnt/localdata/users/yupanhuang/data/PubLayNet/ocr/val |
|
OCR_DATA_DIR_TRAIN: /mnt/localdata/users/yupanhuang/data/PubLayNet/ocr/train |
|
OUTPUT_DIR: /mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/ |
|
PUBLAYNET_DATA_DIR_TEST: /mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/val |
|
PUBLAYNET_DATA_DIR_TRAIN: /mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/train |
|
SEED: 42 |
|
SOLVER: |
|
AMP: |
|
ENABLED: true |
|
BACKBONE_MULTIPLIER: 1.0 |
|
BASE_LR: 0.0002 |
|
BIAS_LR_FACTOR: 1.0 |
|
CHECKPOINT_PERIOD: 2000 |
|
CLIP_GRADIENTS: |
|
CLIP_TYPE: full_model |
|
CLIP_VALUE: 1.0 |
|
ENABLED: true |
|
NORM_TYPE: 2.0 |
|
GAMMA: 0.1 |
|
GRADIENT_ACCUMULATION_STEPS: 1 |
|
IMS_PER_BATCH: 32 |
|
LR_SCHEDULER_NAME: WarmupCosineLR |
|
MAX_ITER: 60000 |
|
MOMENTUM: 0.9 |
|
NESTEROV: false |
|
OPTIMIZER: ADAMW |
|
REFERENCE_WORLD_SIZE: 0 |
|
STEPS: |
|
- 30000 |
|
WARMUP_FACTOR: 0.01 |
|
WARMUP_ITERS: 1000 |
|
WARMUP_METHOD: linear |
|
WEIGHT_DECAY: 0.05 |
|
WEIGHT_DECAY_BIAS: null |
|
WEIGHT_DECAY_NORM: 0.0 |
|
TEST: |
|
AUG: |
|
ENABLED: false |
|
FLIP: true |
|
MAX_SIZE: 4000 |
|
MIN_SIZES: |
|
- 400 |
|
- 500 |
|
- 600 |
|
- 700 |
|
- 800 |
|
- 900 |
|
- 1000 |
|
- 1100 |
|
- 1200 |
|
DETECTIONS_PER_IMAGE: 100 |
|
EVAL_PERIOD: 2000 |
|
EXPECTED_RESULTS: [] |
|
KEYPOINT_OKS_SIGMAS: [] |
|
PRECISE_BN: |
|
ENABLED: false |
|
NUM_ITER: 200 |
|
VERSION: 2 |
|
VIS_PERIOD: 0 |
|
|
|
[04/17 14:10:20 detectron2]: Full config saved to /mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/config.yaml |
|
[04/17 14:10:21 fvcore.common.checkpoint]: [Checkpointer] Loading from /mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/model_final.pth ... |
|
[04/17 14:10:23 d2.data.datasets.coco]: Loading /mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/val.json takes 1.71 seconds. |
|
[04/17 14:10:24 d2.data.datasets.coco]: Loaded 11245 images in COCO format from /mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/val.json |
|
[04/17 14:10:25 d2.data.build]: Distribution of instances among all 5 categories: |
|
| category | #instances | category | #instances | category | #instances | |
|
|:----------:|:-------------|:----------:|:-------------|:----------:|:-------------| |
|
| text | 88625 | title | 18801 | list | 4239 | |
|
| table | 4769 | figure | 4327 | | | |
|
| total | 120761 | | | | | |
|
[04/17 14:10:25 d2.data.common]: Serializing 11245 elements to byte tensors and concatenating them all ... |
|
[04/17 14:10:25 d2.data.common]: Serialized dataset takes 55.80 MiB |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). |
|
max_size = (max_size + (stride - 1)) // stride * stride |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. |
|
"See the documentation of nn.Upsample for details.".format(mode) |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) |
|
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] |
|
[04/17 14:10:27 d2.evaluation.evaluator]: Start inference on 1406 batches |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). |
|
max_size = (max_size + (stride - 1)) // stride * stride |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. |
|
"See the documentation of nn.Upsample for details.".format(mode) |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) |
|
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). |
|
max_size = (max_size + (stride - 1)) // stride * stride |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). |
|
max_size = (max_size + (stride - 1)) // stride * stride |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. |
|
"See the documentation of nn.Upsample for details.".format(mode) |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. |
|
"See the documentation of nn.Upsample for details.".format(mode) |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). |
|
max_size = (max_size + (stride - 1)) // stride * stride |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) |
|
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. |
|
"See the documentation of nn.Upsample for details.".format(mode) |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) |
|
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). |
|
max_size = (max_size + (stride - 1)) // stride * stride |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). |
|
max_size = (max_size + (stride - 1)) // stride * stride |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) |
|
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. |
|
"See the documentation of nn.Upsample for details.".format(mode) |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. |
|
"See the documentation of nn.Upsample for details.".format(mode) |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) |
|
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) |
|
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). |
|
max_size = (max_size + (stride - 1)) // stride * stride |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. |
|
"See the documentation of nn.Upsample for details.".format(mode) |
|
/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) |
|
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] |
|
[04/17 14:10:39 d2.evaluation.evaluator]: Inference done 11/1406. Dataloading: 0.0029 s/iter. Inference: 0.1609 s/iter. Eval: 0.0212 s/iter. Total: 0.1850 s/iter. ETA=0:04:18 |
|
[04/17 14:10:44 d2.evaluation.evaluator]: Inference done 38/1406. Dataloading: 0.0036 s/iter. Inference: 0.1729 s/iter. Eval: 0.0140 s/iter. Total: 0.1909 s/iter. ETA=0:04:21 |
|
[04/17 14:10:50 d2.evaluation.evaluator]: Inference done 66/1406. Dataloading: 0.0027 s/iter. Inference: 0.1703 s/iter. Eval: 0.0149 s/iter. Total: 0.1882 s/iter. ETA=0:04:12 |
|
[04/17 14:10:55 d2.evaluation.evaluator]: Inference done 93/1406. Dataloading: 0.0035 s/iter. Inference: 0.1691 s/iter. Eval: 0.0146 s/iter. Total: 0.1874 s/iter. ETA=0:04:06 |
|
[04/17 14:11:00 d2.evaluation.evaluator]: Inference done 121/1406. Dataloading: 0.0034 s/iter. Inference: 0.1687 s/iter. Eval: 0.0141 s/iter. Total: 0.1864 s/iter. ETA=0:03:59 |
|
[04/17 14:11:05 d2.evaluation.evaluator]: Inference done 149/1406. Dataloading: 0.0031 s/iter. Inference: 0.1684 s/iter. Eval: 0.0137 s/iter. Total: 0.1853 s/iter. ETA=0:03:52 |
|
[04/17 14:11:10 d2.evaluation.evaluator]: Inference done 177/1406. Dataloading: 0.0029 s/iter. Inference: 0.1684 s/iter. Eval: 0.0134 s/iter. Total: 0.1849 s/iter. ETA=0:03:47 |
|
[04/17 14:11:15 d2.evaluation.evaluator]: Inference done 206/1406. Dataloading: 0.0030 s/iter. Inference: 0.1680 s/iter. Eval: 0.0127 s/iter. Total: 0.1838 s/iter. ETA=0:03:40 |
|
[04/17 14:11:20 d2.evaluation.evaluator]: Inference done 234/1406. Dataloading: 0.0032 s/iter. Inference: 0.1676 s/iter. Eval: 0.0125 s/iter. Total: 0.1835 s/iter. ETA=0:03:35 |
|
[04/17 14:11:25 d2.evaluation.evaluator]: Inference done 261/1406. Dataloading: 0.0031 s/iter. Inference: 0.1682 s/iter. Eval: 0.0124 s/iter. Total: 0.1838 s/iter. ETA=0:03:30 |
|
[04/17 14:11:30 d2.evaluation.evaluator]: Inference done 288/1406. Dataloading: 0.0031 s/iter. Inference: 0.1692 s/iter. Eval: 0.0122 s/iter. Total: 0.1846 s/iter. ETA=0:03:26 |
|
[04/17 14:11:35 d2.evaluation.evaluator]: Inference done 315/1406. Dataloading: 0.0030 s/iter. Inference: 0.1694 s/iter. Eval: 0.0121 s/iter. Total: 0.1846 s/iter. ETA=0:03:21 |
|
[04/17 14:11:40 d2.evaluation.evaluator]: Inference done 342/1406. Dataloading: 0.0030 s/iter. Inference: 0.1698 s/iter. Eval: 0.0121 s/iter. Total: 0.1850 s/iter. ETA=0:03:16 |
|
[04/17 14:11:46 d2.evaluation.evaluator]: Inference done 370/1406. Dataloading: 0.0030 s/iter. Inference: 0.1696 s/iter. Eval: 0.0118 s/iter. Total: 0.1846 s/iter. ETA=0:03:11 |
|
[04/17 14:11:51 d2.evaluation.evaluator]: Inference done 396/1406. Dataloading: 0.0030 s/iter. Inference: 0.1704 s/iter. Eval: 0.0117 s/iter. Total: 0.1852 s/iter. ETA=0:03:07 |
|
[04/17 14:11:56 d2.evaluation.evaluator]: Inference done 423/1406. Dataloading: 0.0029 s/iter. Inference: 0.1707 s/iter. Eval: 0.0118 s/iter. Total: 0.1856 s/iter. ETA=0:03:02 |
|
[04/17 14:12:01 d2.evaluation.evaluator]: Inference done 450/1406. Dataloading: 0.0030 s/iter. Inference: 0.1708 s/iter. Eval: 0.0120 s/iter. Total: 0.1859 s/iter. ETA=0:02:57 |
|
[04/17 14:12:06 d2.evaluation.evaluator]: Inference done 476/1406. Dataloading: 0.0029 s/iter. Inference: 0.1713 s/iter. Eval: 0.0120 s/iter. Total: 0.1863 s/iter. ETA=0:02:53 |
|
[04/17 14:12:11 d2.evaluation.evaluator]: Inference done 501/1406. Dataloading: 0.0029 s/iter. Inference: 0.1721 s/iter. Eval: 0.0119 s/iter. Total: 0.1871 s/iter. ETA=0:02:49 |
|
[04/17 14:12:16 d2.evaluation.evaluator]: Inference done 528/1406. Dataloading: 0.0030 s/iter. Inference: 0.1720 s/iter. Eval: 0.0120 s/iter. Total: 0.1871 s/iter. ETA=0:02:44 |
|
[04/17 14:12:21 d2.evaluation.evaluator]: Inference done 555/1406. Dataloading: 0.0030 s/iter. Inference: 0.1721 s/iter. Eval: 0.0121 s/iter. Total: 0.1873 s/iter. ETA=0:02:39 |
|
[04/17 14:12:26 d2.evaluation.evaluator]: Inference done 581/1406. Dataloading: 0.0031 s/iter. Inference: 0.1722 s/iter. Eval: 0.0123 s/iter. Total: 0.1876 s/iter. ETA=0:02:34 |
|
[04/17 14:12:31 d2.evaluation.evaluator]: Inference done 607/1406. Dataloading: 0.0031 s/iter. Inference: 0.1725 s/iter. Eval: 0.0123 s/iter. Total: 0.1880 s/iter. ETA=0:02:30 |
|
[04/17 14:12:36 d2.evaluation.evaluator]: Inference done 633/1406. Dataloading: 0.0031 s/iter. Inference: 0.1728 s/iter. Eval: 0.0122 s/iter. Total: 0.1882 s/iter. ETA=0:02:25 |
|
[04/17 14:12:41 d2.evaluation.evaluator]: Inference done 658/1406. Dataloading: 0.0031 s/iter. Inference: 0.1733 s/iter. Eval: 0.0123 s/iter. Total: 0.1888 s/iter. ETA=0:02:21 |
|
[04/17 14:12:47 d2.evaluation.evaluator]: Inference done 684/1406. Dataloading: 0.0031 s/iter. Inference: 0.1736 s/iter. Eval: 0.0123 s/iter. Total: 0.1891 s/iter. ETA=0:02:16 |
|
[04/17 14:12:52 d2.evaluation.evaluator]: Inference done 710/1406. Dataloading: 0.0031 s/iter. Inference: 0.1738 s/iter. Eval: 0.0124 s/iter. Total: 0.1894 s/iter. ETA=0:02:11 |
|
[04/17 14:12:57 d2.evaluation.evaluator]: Inference done 736/1406. Dataloading: 0.0031 s/iter. Inference: 0.1740 s/iter. Eval: 0.0124 s/iter. Total: 0.1897 s/iter. ETA=0:02:07 |
|
[04/17 14:13:02 d2.evaluation.evaluator]: Inference done 762/1406. Dataloading: 0.0031 s/iter. Inference: 0.1742 s/iter. Eval: 0.0124 s/iter. Total: 0.1898 s/iter. ETA=0:02:02 |
|
[04/17 14:13:07 d2.evaluation.evaluator]: Inference done 787/1406. Dataloading: 0.0031 s/iter. Inference: 0.1743 s/iter. Eval: 0.0126 s/iter. Total: 0.1902 s/iter. ETA=0:01:57 |
|
[04/17 14:13:12 d2.evaluation.evaluator]: Inference done 813/1406. Dataloading: 0.0031 s/iter. Inference: 0.1746 s/iter. Eval: 0.0126 s/iter. Total: 0.1904 s/iter. ETA=0:01:52 |
|
[04/17 14:13:17 d2.evaluation.evaluator]: Inference done 839/1406. Dataloading: 0.0031 s/iter. Inference: 0.1748 s/iter. Eval: 0.0125 s/iter. Total: 0.1905 s/iter. ETA=0:01:48 |
|
[04/17 14:13:22 d2.evaluation.evaluator]: Inference done 865/1406. Dataloading: 0.0031 s/iter. Inference: 0.1750 s/iter. Eval: 0.0125 s/iter. Total: 0.1907 s/iter. ETA=0:01:43 |
|
[04/17 14:13:27 d2.evaluation.evaluator]: Inference done 891/1406. Dataloading: 0.0031 s/iter. Inference: 0.1754 s/iter. Eval: 0.0124 s/iter. Total: 0.1910 s/iter. ETA=0:01:38 |
|
[04/17 14:13:32 d2.evaluation.evaluator]: Inference done 918/1406. Dataloading: 0.0031 s/iter. Inference: 0.1755 s/iter. Eval: 0.0123 s/iter. Total: 0.1910 s/iter. ETA=0:01:33 |
|
[04/17 14:13:37 d2.evaluation.evaluator]: Inference done 943/1406. Dataloading: 0.0030 s/iter. Inference: 0.1759 s/iter. Eval: 0.0121 s/iter. Total: 0.1912 s/iter. ETA=0:01:28 |
|
[04/17 14:13:43 d2.evaluation.evaluator]: Inference done 969/1406. Dataloading: 0.0030 s/iter. Inference: 0.1762 s/iter. Eval: 0.0121 s/iter. Total: 0.1914 s/iter. ETA=0:01:23 |
|
[04/17 14:13:48 d2.evaluation.evaluator]: Inference done 995/1406. Dataloading: 0.0030 s/iter. Inference: 0.1763 s/iter. Eval: 0.0121 s/iter. Total: 0.1915 s/iter. ETA=0:01:18 |
|
[04/17 14:13:53 d2.evaluation.evaluator]: Inference done 1021/1406. Dataloading: 0.0030 s/iter. Inference: 0.1763 s/iter. Eval: 0.0121 s/iter. Total: 0.1916 s/iter. ETA=0:01:13 |
|
[04/17 14:13:58 d2.evaluation.evaluator]: Inference done 1047/1406. Dataloading: 0.0031 s/iter. Inference: 0.1765 s/iter. Eval: 0.0120 s/iter. Total: 0.1917 s/iter. ETA=0:01:08 |
|
[04/17 14:14:03 d2.evaluation.evaluator]: Inference done 1073/1406. Dataloading: 0.0031 s/iter. Inference: 0.1766 s/iter. Eval: 0.0120 s/iter. Total: 0.1918 s/iter. ETA=0:01:03 |
|
[04/17 14:14:08 d2.evaluation.evaluator]: Inference done 1099/1406. Dataloading: 0.0031 s/iter. Inference: 0.1767 s/iter. Eval: 0.0120 s/iter. Total: 0.1919 s/iter. ETA=0:00:58 |
|
[04/17 14:14:13 d2.evaluation.evaluator]: Inference done 1125/1406. Dataloading: 0.0031 s/iter. Inference: 0.1768 s/iter. Eval: 0.0120 s/iter. Total: 0.1919 s/iter. ETA=0:00:53 |
|
[04/17 14:14:18 d2.evaluation.evaluator]: Inference done 1151/1406. Dataloading: 0.0031 s/iter. Inference: 0.1768 s/iter. Eval: 0.0120 s/iter. Total: 0.1920 s/iter. ETA=0:00:48 |
|
[04/17 14:14:23 d2.evaluation.evaluator]: Inference done 1177/1406. Dataloading: 0.0031 s/iter. Inference: 0.1769 s/iter. Eval: 0.0119 s/iter. Total: 0.1920 s/iter. ETA=0:00:43 |
|
[04/17 14:14:28 d2.evaluation.evaluator]: Inference done 1203/1406. Dataloading: 0.0031 s/iter. Inference: 0.1769 s/iter. Eval: 0.0120 s/iter. Total: 0.1921 s/iter. ETA=0:00:39 |
|
[04/17 14:14:33 d2.evaluation.evaluator]: Inference done 1228/1406. Dataloading: 0.0031 s/iter. Inference: 0.1770 s/iter. Eval: 0.0121 s/iter. Total: 0.1923 s/iter. ETA=0:00:34 |
|
[04/17 14:14:38 d2.evaluation.evaluator]: Inference done 1254/1406. Dataloading: 0.0031 s/iter. Inference: 0.1769 s/iter. Eval: 0.0122 s/iter. Total: 0.1924 s/iter. ETA=0:00:29 |
|
[04/17 14:14:43 d2.evaluation.evaluator]: Inference done 1279/1406. Dataloading: 0.0032 s/iter. Inference: 0.1770 s/iter. Eval: 0.0123 s/iter. Total: 0.1926 s/iter. ETA=0:00:24 |
|
[04/17 14:14:48 d2.evaluation.evaluator]: Inference done 1305/1406. Dataloading: 0.0031 s/iter. Inference: 0.1769 s/iter. Eval: 0.0124 s/iter. Total: 0.1926 s/iter. ETA=0:00:19 |
|
[04/17 14:14:54 d2.evaluation.evaluator]: Inference done 1331/1406. Dataloading: 0.0031 s/iter. Inference: 0.1770 s/iter. Eval: 0.0124 s/iter. Total: 0.1926 s/iter. ETA=0:00:14 |
|
[04/17 14:14:59 d2.evaluation.evaluator]: Inference done 1357/1406. Dataloading: 0.0031 s/iter. Inference: 0.1769 s/iter. Eval: 0.0126 s/iter. Total: 0.1927 s/iter. ETA=0:00:09 |
|
[04/17 14:15:04 d2.evaluation.evaluator]: Inference done 1385/1406. Dataloading: 0.0031 s/iter. Inference: 0.1767 s/iter. Eval: 0.0125 s/iter. Total: 0.1924 s/iter. ETA=0:00:04 |
|
[04/17 14:15:08 d2.evaluation.evaluator]: Total inference time: 0:04:29.845715 (0.192609 s / iter per device, on 8 devices) |
|
[04/17 14:15:08 d2.evaluation.evaluator]: Total inference pure compute time: 0:04:07 (0.176466 s / iter per device, on 8 devices) |
|
[04/17 14:15:17 d2.evaluation.coco_evaluation]: Preparing results for COCO format ... |
|
[04/17 14:15:17 d2.evaluation.coco_evaluation]: Saving results to /mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/inference/coco_instances_results.json |
|
[04/17 14:15:18 d2.evaluation.coco_evaluation]: Evaluating predictions with unofficial COCO API... |
|
Loading and preparing results... |
|
DONE (t=0.12s) |
|
creating index... |
|
index created! |
|
[04/17 14:15:19 d2.evaluation.fast_eval_api]: Evaluate annotation type *bbox* |
|
[04/17 14:15:22 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 3.39 seconds. |
|
[04/17 14:15:22 d2.evaluation.fast_eval_api]: Accumulating evaluation results... |
|
[04/17 14:15:23 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.40 seconds. |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.951 |
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.981 |
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.969 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.468 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.856 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.976 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.543 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.953 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.964 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.607 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.897 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.986 |
|
[04/17 14:15:23 d2.evaluation.coco_evaluation]: Evaluation results for bbox: |
|
| AP | AP50 | AP75 | APs | APm | APl | |
|
|:------:|:------:|:------:|:------:|:------:|:------:| |
|
| 95.088 | 98.066 | 96.933 | 46.800 | 85.592 | 97.626 | |
|
[04/17 14:15:23 d2.evaluation.coco_evaluation]: Per-category bbox AP: |
|
| category | AP | category | AP | category | AP | |
|
|:-----------|:-------|:-----------|:-------|:-----------|:-------| |
|
| text | 94.466 | title | 90.569 | list | 95.522 | |
|
| table | 97.883 | figure | 97.001 | | | |
|
Loading and preparing results... |
|
DONE (t=2.05s) |
|
creating index... |
|
index created! |
|
[04/17 14:15:28 d2.evaluation.fast_eval_api]: Evaluate annotation type *segm* |
|
[04/17 14:15:38 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 10.92 seconds. |
|
[04/17 14:15:39 d2.evaluation.fast_eval_api]: Accumulating evaluation results... |
|
[04/17 14:15:39 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.43 seconds. |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.928 |
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.981 |
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.967 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.506 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.824 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.959 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.535 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.938 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.949 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.632 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.879 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.973 |
|
[04/17 14:15:39 d2.evaluation.coco_evaluation]: Evaluation results for segm: |
|
| AP | AP50 | AP75 | APs | APm | APl | |
|
|:------:|:------:|:------:|:------:|:------:|:------:| |
|
| 92.819 | 98.070 | 96.719 | 50.628 | 82.397 | 95.917 | |
|
[04/17 14:15:39 d2.evaluation.coco_evaluation]: Per-category segm AP: |
|
| category | AP | category | AP | category | AP | |
|
|:-----------|:-------|:-----------|:-------|:-----------|:-------| |
|
| text | 93.433 | title | 87.009 | list | 88.864 | |
|
| table | 97.799 | figure | 96.989 | | | |
|
[04/17 14:15:40 d2.evaluation.testing]: copypaste: Task: bbox |
|
[04/17 14:15:40 d2.evaluation.testing]: copypaste: AP,AP50,AP75,APs,APm,APl |
|
[04/17 14:15:40 d2.evaluation.testing]: copypaste: 95.0883,98.0662,96.9331,46.8005,85.5919,97.6258 |
|
[04/17 14:15:40 d2.evaluation.testing]: copypaste: Task: segm |
|
[04/17 14:15:40 d2.evaluation.testing]: copypaste: AP,AP50,AP75,APs,APm,APl |
|
[04/17 14:15:40 d2.evaluation.testing]: copypaste: 92.8187,98.0704,96.7191,50.6278,82.3972,95.9172 |
|
|
|
Process finished with exit code 0 |
|
|
|
|