File size: 39,987 Bytes
a8e49b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
[04/17 14:10:02 detectron2]: Rank of current process: 0. World size: 8 [04/17 14:10:20 detectron2]: Environment info: ---------------------- -------------------------------------------------------------------------------------------------------------------------- sys.platform linux Python 3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0] numpy 1.21.5 detectron2 0.6 @/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2 Compiler GCC 7.3 CUDA compiler CUDA 11.1 detectron2 arch flags 3.7, 5.0, 5.2, 6.0, 6.1, 7.0, 7.5, 8.0, 8.6 DETECTRON2_ENV_MODULE <not set> PyTorch 1.10.0+cu111 @/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch PyTorch debug build False GPU available Yes GPU 0,1,2,3,4,5,6,7 A100-SXM4-40GB (arch=8.0) Driver version 450.142.00 CUDA_HOME /usr/local/cuda Pillow 8.4.0 torchvision 0.11.1+cu111 @/mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torchvision torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6 fvcore 0.1.5.post20211023 iopath 0.1.9 cv2 Not found ---------------------- -------------------------------------------------------------------------------------------------------------------------- PyTorch built with: - GCC 7.3 - C++ Version: 201402 - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740) - OpenMP 201511 (a.k.a. OpenMP 4.5) - LAPACK is enabled (usually provided by MKL) - NNPACK is enabled - CPU capability usage: AVX2 - CUDA Runtime 11.1 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86 - CuDNN 8.0.5 - Magma 2.5.2 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, [04/17 14:10:20 detectron2]: Command line arguments: Namespace(config_file='cascade_layoutlmv3.yaml', debug=False, dist_url='tcp://127.0.0.1:50156', eval_only=True, machine_rank=0, num_gpus=8, num_machines=1, opts=['MODEL.WEIGHTS', '/mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/model_final.pth', 'OUTPUT_DIR', '/mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/'], resume=False) [04/17 14:10:20 detectron2]: Contents of args.config_file=cascade_layoutlmv3.yaml: MODEL: MASK_ON: True MAX_LENGTH: 510 IMAGE_ONLY: True META_ARCHITECTURE: "VLGeneralizedRCNN" PIXEL_MEAN: [ 127.5, 127.5, 127.5 ] PIXEL_STD: [ 127.5, 127.5, 127.5 ] WEIGHTS: "/mnt/localdata/users/yupanhuang/models/layoutlmv3/pts/layoutlmv3-base/pytorch_model.bin" BACKBONE: NAME: "build_vit_fpn_backbone" VIT: NAME: "layoutlmv3_base" OUT_FEATURES: [ "layer3", "layer5", "layer7", "layer11" ] DROP_PATH: 0.1 IMG_SIZE: [ 224,224 ] POS_TYPE: "abs" ROI_HEADS: NAME: CascadeROIHeads IN_FEATURES: [ "p2", "p3", "p4", "p5" ] NUM_CLASSES: 5 ROI_BOX_HEAD: CLS_AGNOSTIC_BBOX_REG: True NAME: "FastRCNNConvFCHead" NUM_FC: 2 POOLER_RESOLUTION: 7 ROI_MASK_HEAD: NAME: "MaskRCNNConvUpsampleHead" NUM_CONV: 4 POOLER_RESOLUTION: 14 FPN: IN_FEATURES: [ "layer3", "layer5", "layer7", "layer11" ] ANCHOR_GENERATOR: SIZES: [ [ 32 ], [ 64 ], [ 128 ], [ 256 ], [ 512 ] ] # One size for each in feature map ASPECT_RATIOS: [ [ 0.5, 1.0, 2.0 ] ] # Three aspect ratios (same for all in feature maps) RPN: IN_FEATURES: [ "p2", "p3", "p4", "p5", "p6" ] PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level PRE_NMS_TOPK_TEST: 1000 # Per FPN level # Detectron1 uses 2000 proposals per-batch, # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue) # which is approximately 1000 proposals per-image since the default batch size for FPN is 2. POST_NMS_TOPK_TRAIN: 2000 POST_NMS_TOPK_TEST: 1000 DATASETS: TRAIN: ("publaynet_train",) TEST: ("publaynet_val",) SOLVER: GRADIENT_ACCUMULATION_STEPS: 1 BASE_LR: 0.0002 WARMUP_ITERS: 1000 IMS_PER_BATCH: 32 MAX_ITER: 60000 CHECKPOINT_PERIOD: 2000 LR_SCHEDULER_NAME: "WarmupCosineLR" AMP: ENABLED: True OPTIMIZER: "ADAMW" BACKBONE_MULTIPLIER: 1.0 CLIP_GRADIENTS: ENABLED: True CLIP_TYPE: "full_model" CLIP_VALUE: 1.0 NORM_TYPE: 2.0 WARMUP_FACTOR: 0.01 WEIGHT_DECAY: 0.05 TEST: EVAL_PERIOD: 2000 INPUT: CROP: ENABLED: True TYPE: "absolute_range" SIZE: (384, 600) MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800) FORMAT: "RGB" DATALOADER: FILTER_EMPTY_ANNOTATIONS: False VERSION: 2 AUG: DETR: True SEED: 42 OUTPUT_DIR: "/mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet/" PUBLAYNET_DATA_DIR_TRAIN: "/mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/train" PUBLAYNET_DATA_DIR_TEST: "/mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/val" OCR_DATA_DIR_TRAIN: "/mnt/localdata/users/yupanhuang/data/PubLayNet/ocr/train" OCR_DATA_DIR_TEST: "/mnt/localdata/users/yupanhuang/data/PubLayNet/ocr/val" CACHE_DIR: "/mnt/localdata/users/yupanhuang/cache/huggingface" [04/17 14:10:20 detectron2]: Running with full config: AUG: DETR: true CACHE_DIR: /mnt/localdata/users/yupanhuang/cache/huggingface CUDNN_BENCHMARK: false DATALOADER: ASPECT_RATIO_GROUPING: true FILTER_EMPTY_ANNOTATIONS: false NUM_WORKERS: 4 REPEAT_THRESHOLD: 0.0 SAMPLER_TRAIN: TrainingSampler DATASETS: PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 PROPOSAL_FILES_TEST: [] PROPOSAL_FILES_TRAIN: [] TEST: - publaynet_val TRAIN: - publaynet_train GLOBAL: HACK: 1.0 ICDAR_DATA_DIR_TEST: '' ICDAR_DATA_DIR_TRAIN: '' INPUT: CROP: ENABLED: true SIZE: - 384 - 600 TYPE: absolute_range FORMAT: RGB MASK_FORMAT: polygon MAX_SIZE_TEST: 1333 MAX_SIZE_TRAIN: 1333 MIN_SIZE_TEST: 800 MIN_SIZE_TRAIN: - 480 - 512 - 544 - 576 - 608 - 640 - 672 - 704 - 736 - 768 - 800 MIN_SIZE_TRAIN_SAMPLING: choice RANDOM_FLIP: horizontal MODEL: ANCHOR_GENERATOR: ANGLES: - - -90 - 0 - 90 ASPECT_RATIOS: - - 0.5 - 1.0 - 2.0 NAME: DefaultAnchorGenerator OFFSET: 0.0 SIZES: - - 32 - - 64 - - 128 - - 256 - - 512 BACKBONE: FREEZE_AT: 2 NAME: build_vit_fpn_backbone CONFIG_PATH: '' DEVICE: cuda FPN: FUSE_TYPE: sum IN_FEATURES: - layer3 - layer5 - layer7 - layer11 NORM: '' OUT_CHANNELS: 256 IMAGE_ONLY: true KEYPOINT_ON: false LOAD_PROPOSALS: false MASK_ON: true MAX_LENGTH: 510 META_ARCHITECTURE: VLGeneralizedRCNN PANOPTIC_FPN: COMBINE: ENABLED: true INSTANCES_CONFIDENCE_THRESH: 0.5 OVERLAP_THRESH: 0.5 STUFF_AREA_LIMIT: 4096 INSTANCE_LOSS_WEIGHT: 1.0 PIXEL_MEAN: - 127.5 - 127.5 - 127.5 PIXEL_STD: - 127.5 - 127.5 - 127.5 PROPOSAL_GENERATOR: MIN_SIZE: 0 NAME: RPN RESNETS: DEFORM_MODULATED: false DEFORM_NUM_GROUPS: 1 DEFORM_ON_PER_STAGE: - false - false - false - false DEPTH: 50 NORM: FrozenBN NUM_GROUPS: 1 OUT_FEATURES: - res4 RES2_OUT_CHANNELS: 256 RES5_DILATION: 1 STEM_OUT_CHANNELS: 64 STRIDE_IN_1X1: true WIDTH_PER_GROUP: 64 RETINANET: BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_WEIGHTS: &id001 - 1.0 - 1.0 - 1.0 - 1.0 FOCAL_LOSS_ALPHA: 0.25 FOCAL_LOSS_GAMMA: 2.0 IN_FEATURES: - p3 - p4 - p5 - p6 - p7 IOU_LABELS: - 0 - -1 - 1 IOU_THRESHOLDS: - 0.4 - 0.5 NMS_THRESH_TEST: 0.5 NORM: '' NUM_CLASSES: 80 NUM_CONVS: 4 PRIOR_PROB: 0.01 SCORE_THRESH_TEST: 0.05 SMOOTH_L1_LOSS_BETA: 0.1 TOPK_CANDIDATES_TEST: 1000 ROI_BOX_CASCADE_HEAD: BBOX_REG_WEIGHTS: - - 10.0 - 10.0 - 5.0 - 5.0 - - 20.0 - 20.0 - 10.0 - 10.0 - - 30.0 - 30.0 - 15.0 - 15.0 IOUS: - 0.5 - 0.6 - 0.7 ROI_BOX_HEAD: BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_LOSS_WEIGHT: 1.0 BBOX_REG_WEIGHTS: - 10.0 - 10.0 - 5.0 - 5.0 CLS_AGNOSTIC_BBOX_REG: true CONV_DIM: 256 FC_DIM: 1024 NAME: FastRCNNConvFCHead NORM: '' NUM_CONV: 0 NUM_FC: 2 POOLER_RESOLUTION: 7 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 SMOOTH_L1_BETA: 0.0 TRAIN_ON_PRED_BOXES: false ROI_HEADS: BATCH_SIZE_PER_IMAGE: 512 IN_FEATURES: - p2 - p3 - p4 - p5 IOU_LABELS: - 0 - 1 IOU_THRESHOLDS: - 0.5 NAME: CascadeROIHeads NMS_THRESH_TEST: 0.5 NUM_CLASSES: 5 POSITIVE_FRACTION: 0.25 PROPOSAL_APPEND_GT: true SCORE_THRESH_TEST: 0.05 ROI_KEYPOINT_HEAD: CONV_DIMS: - 512 - 512 - 512 - 512 - 512 - 512 - 512 - 512 LOSS_WEIGHT: 1.0 MIN_KEYPOINTS_PER_IMAGE: 1 NAME: KRCNNConvDeconvUpsampleHead NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true NUM_KEYPOINTS: 17 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 ROI_MASK_HEAD: CLS_AGNOSTIC_MASK: false CONV_DIM: 256 NAME: MaskRCNNConvUpsampleHead NORM: '' NUM_CONV: 4 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 RPN: BATCH_SIZE_PER_IMAGE: 256 BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_LOSS_WEIGHT: 1.0 BBOX_REG_WEIGHTS: *id001 BOUNDARY_THRESH: -1 CONV_DIMS: - -1 HEAD_NAME: StandardRPNHead IN_FEATURES: - p2 - p3 - p4 - p5 - p6 IOU_LABELS: - 0 - -1 - 1 IOU_THRESHOLDS: - 0.3 - 0.7 LOSS_WEIGHT: 1.0 NMS_THRESH: 0.7 POSITIVE_FRACTION: 0.5 POST_NMS_TOPK_TEST: 1000 POST_NMS_TOPK_TRAIN: 2000 PRE_NMS_TOPK_TEST: 1000 PRE_NMS_TOPK_TRAIN: 2000 SMOOTH_L1_BETA: 0.0 SEM_SEG_HEAD: COMMON_STRIDE: 4 CONVS_DIM: 128 IGNORE_VALUE: 255 IN_FEATURES: - p2 - p3 - p4 - p5 LOSS_WEIGHT: 1.0 NAME: SemSegFPNHead NORM: GN NUM_CLASSES: 54 VIT: DROP_PATH: 0.1 IMG_SIZE: - 224 - 224 MODEL_KWARGS: '{}' NAME: layoutlmv3_base OUT_FEATURES: - layer3 - layer5 - layer7 - layer11 POS_TYPE: abs WEIGHTS: /mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/model_final.pth OCR_DATA_DIR_TEST: /mnt/localdata/users/yupanhuang/data/PubLayNet/ocr/val OCR_DATA_DIR_TRAIN: /mnt/localdata/users/yupanhuang/data/PubLayNet/ocr/train OUTPUT_DIR: /mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/ PUBLAYNET_DATA_DIR_TEST: /mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/val PUBLAYNET_DATA_DIR_TRAIN: /mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/train SEED: 42 SOLVER: AMP: ENABLED: true BACKBONE_MULTIPLIER: 1.0 BASE_LR: 0.0002 BIAS_LR_FACTOR: 1.0 CHECKPOINT_PERIOD: 2000 CLIP_GRADIENTS: CLIP_TYPE: full_model CLIP_VALUE: 1.0 ENABLED: true NORM_TYPE: 2.0 GAMMA: 0.1 GRADIENT_ACCUMULATION_STEPS: 1 IMS_PER_BATCH: 32 LR_SCHEDULER_NAME: WarmupCosineLR MAX_ITER: 60000 MOMENTUM: 0.9 NESTEROV: false OPTIMIZER: ADAMW REFERENCE_WORLD_SIZE: 0 STEPS: - 30000 WARMUP_FACTOR: 0.01 WARMUP_ITERS: 1000 WARMUP_METHOD: linear WEIGHT_DECAY: 0.05 WEIGHT_DECAY_BIAS: null WEIGHT_DECAY_NORM: 0.0 TEST: AUG: ENABLED: false FLIP: true MAX_SIZE: 4000 MIN_SIZES: - 400 - 500 - 600 - 700 - 800 - 900 - 1000 - 1100 - 1200 DETECTIONS_PER_IMAGE: 100 EVAL_PERIOD: 2000 EXPECTED_RESULTS: [] KEYPOINT_OKS_SIGMAS: [] PRECISE_BN: ENABLED: false NUM_ITER: 200 VERSION: 2 VIS_PERIOD: 0 [04/17 14:10:20 detectron2]: Full config saved to /mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/config.yaml [04/17 14:10:21 fvcore.common.checkpoint]: [Checkpointer] Loading from /mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/model_final.pth ... [04/17 14:10:23 d2.data.datasets.coco]: Loading /mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/val.json takes 1.71 seconds. [04/17 14:10:24 d2.data.datasets.coco]: Loaded 11245 images in COCO format from /mnt/localdata/users/yupanhuang/data/PubLayNet/publaynet/val.json [04/17 14:10:25 d2.data.build]: Distribution of instances among all 5 categories: | category | #instances | category | #instances | category | #instances | |:----------:|:-------------|:----------:|:-------------|:----------:|:-------------| | text | 88625 | title | 18801 | list | 4239 | | table | 4769 | figure | 4327 | | | | total | 120761 | | | | | [04/17 14:10:25 d2.data.common]: Serializing 11245 elements to byte tensors and concatenating them all ... [04/17 14:10:25 d2.data.common]: Serialized dataset takes 55.80 MiB /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). max_size = (max_size + (stride - 1)) // stride * stride /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] [04/17 14:10:27 d2.evaluation.evaluator]: Start inference on 1406 batches /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). max_size = (max_size + (stride - 1)) // stride * stride /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). max_size = (max_size + (stride - 1)) // stride * stride /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). max_size = (max_size + (stride - 1)) // stride * stride /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). max_size = (max_size + (stride - 1)) // stride * stride /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). max_size = (max_size + (stride - 1)) // stride * stride /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). max_size = (max_size + (stride - 1)) // stride * stride /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/detectron2/structures/image_list.py:88: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). max_size = (max_size + (stride - 1)) // stride * stride /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/nn/functional.py:3635: UserWarning: Default upsampling behavior when mode=bicubic is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode) /mnt/localdata/users/yupanhuang/Downloads/miniconda3/envs/layoutlmft/lib/python3.7/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] [04/17 14:10:39 d2.evaluation.evaluator]: Inference done 11/1406. Dataloading: 0.0029 s/iter. Inference: 0.1609 s/iter. Eval: 0.0212 s/iter. Total: 0.1850 s/iter. ETA=0:04:18 [04/17 14:10:44 d2.evaluation.evaluator]: Inference done 38/1406. Dataloading: 0.0036 s/iter. Inference: 0.1729 s/iter. Eval: 0.0140 s/iter. Total: 0.1909 s/iter. ETA=0:04:21 [04/17 14:10:50 d2.evaluation.evaluator]: Inference done 66/1406. Dataloading: 0.0027 s/iter. Inference: 0.1703 s/iter. Eval: 0.0149 s/iter. Total: 0.1882 s/iter. ETA=0:04:12 [04/17 14:10:55 d2.evaluation.evaluator]: Inference done 93/1406. Dataloading: 0.0035 s/iter. Inference: 0.1691 s/iter. Eval: 0.0146 s/iter. Total: 0.1874 s/iter. ETA=0:04:06 [04/17 14:11:00 d2.evaluation.evaluator]: Inference done 121/1406. Dataloading: 0.0034 s/iter. Inference: 0.1687 s/iter. Eval: 0.0141 s/iter. Total: 0.1864 s/iter. ETA=0:03:59 [04/17 14:11:05 d2.evaluation.evaluator]: Inference done 149/1406. Dataloading: 0.0031 s/iter. Inference: 0.1684 s/iter. Eval: 0.0137 s/iter. Total: 0.1853 s/iter. ETA=0:03:52 [04/17 14:11:10 d2.evaluation.evaluator]: Inference done 177/1406. Dataloading: 0.0029 s/iter. Inference: 0.1684 s/iter. Eval: 0.0134 s/iter. Total: 0.1849 s/iter. ETA=0:03:47 [04/17 14:11:15 d2.evaluation.evaluator]: Inference done 206/1406. Dataloading: 0.0030 s/iter. Inference: 0.1680 s/iter. Eval: 0.0127 s/iter. Total: 0.1838 s/iter. ETA=0:03:40 [04/17 14:11:20 d2.evaluation.evaluator]: Inference done 234/1406. Dataloading: 0.0032 s/iter. Inference: 0.1676 s/iter. Eval: 0.0125 s/iter. Total: 0.1835 s/iter. ETA=0:03:35 [04/17 14:11:25 d2.evaluation.evaluator]: Inference done 261/1406. Dataloading: 0.0031 s/iter. Inference: 0.1682 s/iter. Eval: 0.0124 s/iter. Total: 0.1838 s/iter. ETA=0:03:30 [04/17 14:11:30 d2.evaluation.evaluator]: Inference done 288/1406. Dataloading: 0.0031 s/iter. Inference: 0.1692 s/iter. Eval: 0.0122 s/iter. Total: 0.1846 s/iter. ETA=0:03:26 [04/17 14:11:35 d2.evaluation.evaluator]: Inference done 315/1406. Dataloading: 0.0030 s/iter. Inference: 0.1694 s/iter. Eval: 0.0121 s/iter. Total: 0.1846 s/iter. ETA=0:03:21 [04/17 14:11:40 d2.evaluation.evaluator]: Inference done 342/1406. Dataloading: 0.0030 s/iter. Inference: 0.1698 s/iter. Eval: 0.0121 s/iter. Total: 0.1850 s/iter. ETA=0:03:16 [04/17 14:11:46 d2.evaluation.evaluator]: Inference done 370/1406. Dataloading: 0.0030 s/iter. Inference: 0.1696 s/iter. Eval: 0.0118 s/iter. Total: 0.1846 s/iter. ETA=0:03:11 [04/17 14:11:51 d2.evaluation.evaluator]: Inference done 396/1406. Dataloading: 0.0030 s/iter. Inference: 0.1704 s/iter. Eval: 0.0117 s/iter. Total: 0.1852 s/iter. ETA=0:03:07 [04/17 14:11:56 d2.evaluation.evaluator]: Inference done 423/1406. Dataloading: 0.0029 s/iter. Inference: 0.1707 s/iter. Eval: 0.0118 s/iter. Total: 0.1856 s/iter. ETA=0:03:02 [04/17 14:12:01 d2.evaluation.evaluator]: Inference done 450/1406. Dataloading: 0.0030 s/iter. Inference: 0.1708 s/iter. Eval: 0.0120 s/iter. Total: 0.1859 s/iter. ETA=0:02:57 [04/17 14:12:06 d2.evaluation.evaluator]: Inference done 476/1406. Dataloading: 0.0029 s/iter. Inference: 0.1713 s/iter. Eval: 0.0120 s/iter. Total: 0.1863 s/iter. ETA=0:02:53 [04/17 14:12:11 d2.evaluation.evaluator]: Inference done 501/1406. Dataloading: 0.0029 s/iter. Inference: 0.1721 s/iter. Eval: 0.0119 s/iter. Total: 0.1871 s/iter. ETA=0:02:49 [04/17 14:12:16 d2.evaluation.evaluator]: Inference done 528/1406. Dataloading: 0.0030 s/iter. Inference: 0.1720 s/iter. Eval: 0.0120 s/iter. Total: 0.1871 s/iter. ETA=0:02:44 [04/17 14:12:21 d2.evaluation.evaluator]: Inference done 555/1406. Dataloading: 0.0030 s/iter. Inference: 0.1721 s/iter. Eval: 0.0121 s/iter. Total: 0.1873 s/iter. ETA=0:02:39 [04/17 14:12:26 d2.evaluation.evaluator]: Inference done 581/1406. Dataloading: 0.0031 s/iter. Inference: 0.1722 s/iter. Eval: 0.0123 s/iter. Total: 0.1876 s/iter. ETA=0:02:34 [04/17 14:12:31 d2.evaluation.evaluator]: Inference done 607/1406. Dataloading: 0.0031 s/iter. Inference: 0.1725 s/iter. Eval: 0.0123 s/iter. Total: 0.1880 s/iter. ETA=0:02:30 [04/17 14:12:36 d2.evaluation.evaluator]: Inference done 633/1406. Dataloading: 0.0031 s/iter. Inference: 0.1728 s/iter. Eval: 0.0122 s/iter. Total: 0.1882 s/iter. ETA=0:02:25 [04/17 14:12:41 d2.evaluation.evaluator]: Inference done 658/1406. Dataloading: 0.0031 s/iter. Inference: 0.1733 s/iter. Eval: 0.0123 s/iter. Total: 0.1888 s/iter. ETA=0:02:21 [04/17 14:12:47 d2.evaluation.evaluator]: Inference done 684/1406. Dataloading: 0.0031 s/iter. Inference: 0.1736 s/iter. Eval: 0.0123 s/iter. Total: 0.1891 s/iter. ETA=0:02:16 [04/17 14:12:52 d2.evaluation.evaluator]: Inference done 710/1406. Dataloading: 0.0031 s/iter. Inference: 0.1738 s/iter. Eval: 0.0124 s/iter. Total: 0.1894 s/iter. ETA=0:02:11 [04/17 14:12:57 d2.evaluation.evaluator]: Inference done 736/1406. Dataloading: 0.0031 s/iter. Inference: 0.1740 s/iter. Eval: 0.0124 s/iter. Total: 0.1897 s/iter. ETA=0:02:07 [04/17 14:13:02 d2.evaluation.evaluator]: Inference done 762/1406. Dataloading: 0.0031 s/iter. Inference: 0.1742 s/iter. Eval: 0.0124 s/iter. Total: 0.1898 s/iter. ETA=0:02:02 [04/17 14:13:07 d2.evaluation.evaluator]: Inference done 787/1406. Dataloading: 0.0031 s/iter. Inference: 0.1743 s/iter. Eval: 0.0126 s/iter. Total: 0.1902 s/iter. ETA=0:01:57 [04/17 14:13:12 d2.evaluation.evaluator]: Inference done 813/1406. Dataloading: 0.0031 s/iter. Inference: 0.1746 s/iter. Eval: 0.0126 s/iter. Total: 0.1904 s/iter. ETA=0:01:52 [04/17 14:13:17 d2.evaluation.evaluator]: Inference done 839/1406. Dataloading: 0.0031 s/iter. Inference: 0.1748 s/iter. Eval: 0.0125 s/iter. Total: 0.1905 s/iter. ETA=0:01:48 [04/17 14:13:22 d2.evaluation.evaluator]: Inference done 865/1406. Dataloading: 0.0031 s/iter. Inference: 0.1750 s/iter. Eval: 0.0125 s/iter. Total: 0.1907 s/iter. ETA=0:01:43 [04/17 14:13:27 d2.evaluation.evaluator]: Inference done 891/1406. Dataloading: 0.0031 s/iter. Inference: 0.1754 s/iter. Eval: 0.0124 s/iter. Total: 0.1910 s/iter. ETA=0:01:38 [04/17 14:13:32 d2.evaluation.evaluator]: Inference done 918/1406. Dataloading: 0.0031 s/iter. Inference: 0.1755 s/iter. Eval: 0.0123 s/iter. Total: 0.1910 s/iter. ETA=0:01:33 [04/17 14:13:37 d2.evaluation.evaluator]: Inference done 943/1406. Dataloading: 0.0030 s/iter. Inference: 0.1759 s/iter. Eval: 0.0121 s/iter. Total: 0.1912 s/iter. ETA=0:01:28 [04/17 14:13:43 d2.evaluation.evaluator]: Inference done 969/1406. Dataloading: 0.0030 s/iter. Inference: 0.1762 s/iter. Eval: 0.0121 s/iter. Total: 0.1914 s/iter. ETA=0:01:23 [04/17 14:13:48 d2.evaluation.evaluator]: Inference done 995/1406. Dataloading: 0.0030 s/iter. Inference: 0.1763 s/iter. Eval: 0.0121 s/iter. Total: 0.1915 s/iter. ETA=0:01:18 [04/17 14:13:53 d2.evaluation.evaluator]: Inference done 1021/1406. Dataloading: 0.0030 s/iter. Inference: 0.1763 s/iter. Eval: 0.0121 s/iter. Total: 0.1916 s/iter. ETA=0:01:13 [04/17 14:13:58 d2.evaluation.evaluator]: Inference done 1047/1406. Dataloading: 0.0031 s/iter. Inference: 0.1765 s/iter. Eval: 0.0120 s/iter. Total: 0.1917 s/iter. ETA=0:01:08 [04/17 14:14:03 d2.evaluation.evaluator]: Inference done 1073/1406. Dataloading: 0.0031 s/iter. Inference: 0.1766 s/iter. Eval: 0.0120 s/iter. Total: 0.1918 s/iter. ETA=0:01:03 [04/17 14:14:08 d2.evaluation.evaluator]: Inference done 1099/1406. Dataloading: 0.0031 s/iter. Inference: 0.1767 s/iter. Eval: 0.0120 s/iter. Total: 0.1919 s/iter. ETA=0:00:58 [04/17 14:14:13 d2.evaluation.evaluator]: Inference done 1125/1406. Dataloading: 0.0031 s/iter. Inference: 0.1768 s/iter. Eval: 0.0120 s/iter. Total: 0.1919 s/iter. ETA=0:00:53 [04/17 14:14:18 d2.evaluation.evaluator]: Inference done 1151/1406. Dataloading: 0.0031 s/iter. Inference: 0.1768 s/iter. Eval: 0.0120 s/iter. Total: 0.1920 s/iter. ETA=0:00:48 [04/17 14:14:23 d2.evaluation.evaluator]: Inference done 1177/1406. Dataloading: 0.0031 s/iter. Inference: 0.1769 s/iter. Eval: 0.0119 s/iter. Total: 0.1920 s/iter. ETA=0:00:43 [04/17 14:14:28 d2.evaluation.evaluator]: Inference done 1203/1406. Dataloading: 0.0031 s/iter. Inference: 0.1769 s/iter. Eval: 0.0120 s/iter. Total: 0.1921 s/iter. ETA=0:00:39 [04/17 14:14:33 d2.evaluation.evaluator]: Inference done 1228/1406. Dataloading: 0.0031 s/iter. Inference: 0.1770 s/iter. Eval: 0.0121 s/iter. Total: 0.1923 s/iter. ETA=0:00:34 [04/17 14:14:38 d2.evaluation.evaluator]: Inference done 1254/1406. Dataloading: 0.0031 s/iter. Inference: 0.1769 s/iter. Eval: 0.0122 s/iter. Total: 0.1924 s/iter. ETA=0:00:29 [04/17 14:14:43 d2.evaluation.evaluator]: Inference done 1279/1406. Dataloading: 0.0032 s/iter. Inference: 0.1770 s/iter. Eval: 0.0123 s/iter. Total: 0.1926 s/iter. ETA=0:00:24 [04/17 14:14:48 d2.evaluation.evaluator]: Inference done 1305/1406. Dataloading: 0.0031 s/iter. Inference: 0.1769 s/iter. Eval: 0.0124 s/iter. Total: 0.1926 s/iter. ETA=0:00:19 [04/17 14:14:54 d2.evaluation.evaluator]: Inference done 1331/1406. Dataloading: 0.0031 s/iter. Inference: 0.1770 s/iter. Eval: 0.0124 s/iter. Total: 0.1926 s/iter. ETA=0:00:14 [04/17 14:14:59 d2.evaluation.evaluator]: Inference done 1357/1406. Dataloading: 0.0031 s/iter. Inference: 0.1769 s/iter. Eval: 0.0126 s/iter. Total: 0.1927 s/iter. ETA=0:00:09 [04/17 14:15:04 d2.evaluation.evaluator]: Inference done 1385/1406. Dataloading: 0.0031 s/iter. Inference: 0.1767 s/iter. Eval: 0.0125 s/iter. Total: 0.1924 s/iter. ETA=0:00:04 [04/17 14:15:08 d2.evaluation.evaluator]: Total inference time: 0:04:29.845715 (0.192609 s / iter per device, on 8 devices) [04/17 14:15:08 d2.evaluation.evaluator]: Total inference pure compute time: 0:04:07 (0.176466 s / iter per device, on 8 devices) [04/17 14:15:17 d2.evaluation.coco_evaluation]: Preparing results for COCO format ... [04/17 14:15:17 d2.evaluation.coco_evaluation]: Saving results to /mnt/localdata/users/yupanhuang/models/layoutlmv3/fts/publaynet-base/inference/coco_instances_results.json [04/17 14:15:18 d2.evaluation.coco_evaluation]: Evaluating predictions with unofficial COCO API... Loading and preparing results... DONE (t=0.12s) creating index... index created! [04/17 14:15:19 d2.evaluation.fast_eval_api]: Evaluate annotation type *bbox* [04/17 14:15:22 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 3.39 seconds. [04/17 14:15:22 d2.evaluation.fast_eval_api]: Accumulating evaluation results... [04/17 14:15:23 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.40 seconds. Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.951 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.981 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.969 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.468 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.856 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.976 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.543 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.953 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.964 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.607 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.897 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.986 [04/17 14:15:23 d2.evaluation.coco_evaluation]: Evaluation results for bbox: | AP | AP50 | AP75 | APs | APm | APl | |:------:|:------:|:------:|:------:|:------:|:------:| | 95.088 | 98.066 | 96.933 | 46.800 | 85.592 | 97.626 | [04/17 14:15:23 d2.evaluation.coco_evaluation]: Per-category bbox AP: | category | AP | category | AP | category | AP | |:-----------|:-------|:-----------|:-------|:-----------|:-------| | text | 94.466 | title | 90.569 | list | 95.522 | | table | 97.883 | figure | 97.001 | | | Loading and preparing results... DONE (t=2.05s) creating index... index created! [04/17 14:15:28 d2.evaluation.fast_eval_api]: Evaluate annotation type *segm* [04/17 14:15:38 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 10.92 seconds. [04/17 14:15:39 d2.evaluation.fast_eval_api]: Accumulating evaluation results... [04/17 14:15:39 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.43 seconds. Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.928 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.981 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.967 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.506 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.824 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.959 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.535 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.938 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.949 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.632 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.879 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.973 [04/17 14:15:39 d2.evaluation.coco_evaluation]: Evaluation results for segm: | AP | AP50 | AP75 | APs | APm | APl | |:------:|:------:|:------:|:------:|:------:|:------:| | 92.819 | 98.070 | 96.719 | 50.628 | 82.397 | 95.917 | [04/17 14:15:39 d2.evaluation.coco_evaluation]: Per-category segm AP: | category | AP | category | AP | category | AP | |:-----------|:-------|:-----------|:-------|:-----------|:-------| | text | 93.433 | title | 87.009 | list | 88.864 | | table | 97.799 | figure | 96.989 | | | [04/17 14:15:40 d2.evaluation.testing]: copypaste: Task: bbox [04/17 14:15:40 d2.evaluation.testing]: copypaste: AP,AP50,AP75,APs,APm,APl [04/17 14:15:40 d2.evaluation.testing]: copypaste: 95.0883,98.0662,96.9331,46.8005,85.5919,97.6258 [04/17 14:15:40 d2.evaluation.testing]: copypaste: Task: segm [04/17 14:15:40 d2.evaluation.testing]: copypaste: AP,AP50,AP75,APs,APm,APl [04/17 14:15:40 d2.evaluation.testing]: copypaste: 92.8187,98.0704,96.7191,50.6278,82.3972,95.9172 Process finished with exit code 0 |