distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5321
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1271 1.0 113 2.0529 0.47
1.4245 2.0 226 1.4173 0.6
1.1783 3.0 339 1.0567 0.71
0.7597 4.0 452 0.8387 0.75
0.6043 5.0 565 0.6876 0.81
0.4758 6.0 678 0.6897 0.79
0.4882 7.0 791 0.6507 0.79
0.2361 8.0 904 0.6232 0.84
0.209 9.0 1017 0.5800 0.82
0.0859 10.0 1130 0.5414 0.85
0.0639 11.0 1243 0.5321 0.88
0.0405 12.0 1356 0.8187 0.82
0.0481 13.0 1469 0.7086 0.85
0.0127 14.0 1582 0.7394 0.84
0.0071 15.0 1695 0.6890 0.86
0.0073 16.0 1808 0.7361 0.86
0.0062 17.0 1921 0.9311 0.8
0.0028 18.0 2034 0.7819 0.84
0.0024 19.0 2147 0.8263 0.86
0.0023 20.0 2260 0.8049 0.86

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gwenn-LR/distilhubert-finetuned-gtzan

Finetuned
(422)
this model

Dataset used to train Gwenn-LR/distilhubert-finetuned-gtzan

Evaluation results