Gurveer05 commited on
Commit
200e680
·
verified ·
1 Parent(s): 8a7f065

Add new SentenceTransformer model.

Browse files
Files changed (4) hide show
  1. README.md +197 -140
  2. config.json +1 -1
  3. config_sentence_transformers.json +1 -1
  4. model.safetensors +1 -1
README.md CHANGED
@@ -7,117 +7,180 @@ tags:
7
  - sentence-similarity
8
  - feature-extraction
9
  - generated_from_trainer
10
- - dataset_size:24420
11
  - loss:MultipleNegativesRankingLoss
12
  widget:
13
- - source_sentence: "Construct: Solve linear equations with the variable appearing\
14
- \ on both sides, with all positive integers.\n\nQuestion: Jo and Paul are arguing\
15
- \ about a first step to solve this equation:\n2 v-5=6 v-3\n\nJo says you can write:\
16
- \ 2 v-8=6 v \n\nPaul says you can write: 2 v=6 v-8 \n\nWho is correct?\n\nOptions:\n\
17
- A. Only\nJo\nB. Only\nPaul\nC. Both Jo and Paul\nD. Neither is correct\n\nAnswer:\
18
- \ Only\nJo"
19
- sentences:
20
- - Answers order of operations questions with brackets as if the brackets are not
21
- there
22
- - Goes the wrong direction in the sequence when identifying term-to-term rule
23
- - When solving an equation, uses the same operation rather than the inverse.
24
- - source_sentence: 'Construct: Round the elements of a calculation to one significant
25
- figure to perform an estimation.
 
 
 
 
26
 
 
27
 
28
- Question: Julie wants to estimate the answer to this calculation by rounding
29
- each number to 1 significant figure.
30
 
31
 
32
- [
33
 
34
- 0.5841 x 36.3
35
 
36
- ]
 
 
 
 
 
 
 
 
 
 
37
 
38
 
39
- What number should replace 0 . 5 8 4 1 in her estimation?
 
 
40
 
41
 
42
  Options:
43
 
44
- A. 1
 
 
 
 
45
 
46
- B. 0.5000
47
 
48
- C. 0.6
49
 
50
- D. 0.5
51
 
52
 
53
- Answer: 0.5000'
 
 
 
 
54
  sentences:
55
- - Thinks you need to include the total as well as the individual parts when asked
56
- to write a ratio
57
- - Rounds down instead of up
58
- - When factorising a quadratic without a non variable term, tries to double bracket
59
- factorise
60
- - source_sentence: "Construct: Represent an equation using a bar model.\n\nQuestion:\
61
- \ Tom and Katie are discussing bar models. Tom says this bar model represents\
62
- \ 5 x \n 5 | x \n\n Katie says this bar model represents 5 x \n x | \
63
- \ x | x | x | x \n\n Who do you agree with?\n\nOptions:\nA. Only Tom\n\
64
- B. Only Katie\nC. Both Tom and Katie\nD. Neither is correct\n\nAnswer: Neither\
65
- \ is correct"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  sentences:
67
- - Does not understand that a probability of 1 represents something that is certain
68
- - Does not understand bar modelling in algebra
69
- - Does not understand that you can have percentages greater than 100%
70
- - source_sentence: 'Construct: Find another power of 10 more than a given number.
 
 
 
71
 
 
72
 
73
- Question: What number is 10,000 more than 298,603 ?
 
 
 
 
 
74
 
75
 
76
  Options:
77
 
78
- A. 398,603
 
 
 
 
 
 
79
 
80
- B. 2,986,030,000
81
 
82
- C. 208,603
83
 
84
- D. 308,603
85
 
 
86
 
87
- Answer: 208,603'
 
 
88
  sentences:
89
- - When solving an equation, uses the same operation rather than the inverse.
90
- - Cannot estimate the relative volume order, for different objects
91
- - When two digits sum to 10 or more during an addition problem, does not add one
92
- to the preceding digit
93
- - source_sentence: 'Construct: Interpret a pie chart.
 
94
 
95
 
96
- Question: A darts player hits his target 40 % of the time. Which pie chart
97
- represents his hits and misses?
98
 
99
 
100
  Options:
101
 
102
- A. Pie chart showing hits highlighted with 320 degrees of the chart and misses
103
- with 40 degrees.
 
 
 
 
 
 
104
 
105
- B. Pie chart showing hits with 2/3 of the chart and misses, highlighted in red,
106
- with 1/3
107
 
108
- C. Pie chart showing hits, in white, with 320 degrees of the chart and misses,
109
- highlighted in red, with 40 degrees.
110
 
111
- D. Pie chart showing hits with just over 1/3 of the chart, highlighted in red
112
- and misses, in white, with just under 2/3
113
 
114
 
115
- Answer: Pie chart showing hits with 2/3 of the chart and misses, highlighted in
116
- red, with 1/3'
117
  sentences:
118
- - Answers as if there are 100 minutes in an hour when changing from hours to minutes
119
- - Thinks x = y is an axis
120
- - Does not know how to read information off a pie chart
121
  ---
122
 
123
  # SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
@@ -170,9 +233,9 @@ from sentence_transformers import SentenceTransformer
170
  model = SentenceTransformer("Gurveer05/gte-base-eedi-2024")
171
  # Run inference
172
  sentences = [
173
- 'Construct: Interpret a pie chart.\n\nQuestion: A darts player hits his target 40 % of the time. Which pie chart represents his hits and misses?\n\nOptions:\nA. Pie chart showing hits highlighted with 320 degrees of the chart and misses with 40 degrees.\nB. Pie chart showing hits with 2/3 of the chart and misses, highlighted in red, with 1/3\nC. Pie chart showing hits, in white, with 320 degrees of the chart and misses, highlighted in red, with 40 degrees.\nD. Pie chart showing hits with just over 1/3 of the chart, highlighted in red and misses, in white, with just under 2/3\n\nAnswer: Pie chart showing hits with 2/3 of the chart and misses, highlighted in red, with 1/3',
174
- 'Does not know how to read information off a pie chart',
175
- 'Thinks x = y is an axis',
176
  ]
177
  embeddings = model.encode(sentences)
178
  print(embeddings.shape)
@@ -227,19 +290,19 @@ You can finetune this model on your own dataset.
227
  #### csv
228
 
229
  * Dataset: csv
230
- * Size: 24,420 training samples
231
- * Columns: <code>qa_pair_text</code>, <code>MisconceptionName</code>, and <code>negative</code>
232
  * Approximate statistics based on the first 1000 samples:
233
- | | qa_pair_text | MisconceptionName | negative |
234
- |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
235
- | type | string | string | string |
236
- | details | <ul><li>min: 35 tokens</li><li>mean: 92.3 tokens</li><li>max: 507 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.5 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.1 tokens</li><li>max: 39 tokens</li></ul> |
237
  * Samples:
238
- | qa_pair_text | MisconceptionName | negative |
239
- |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
240
- | <code>Construct: Find missing numbers in a fraction multiplication.<br><br>Question: (3 / 5) x ?=(1 / 2).<br><br>Options:<br>A. (2 / 3)<br>B. (5 / 6)<br>C. (3 / 10)<br>D. There are no values that make this calculation work<br><br>Answer: There are no values that make this calculation work</code> | <code>Does not realise that division can be used to find the missing value in a multiplication problem</code> | <code>Finds the unit fraction when asked to find a non-unit fraction of an amount</code> |
241
- | <code>Construct: Find missing angles in a scalene triangle.<br><br>Question: What is the size of angle p ? A triangle with angles labelled 49 degrees, 51 degrees and p [not to scale].<br><br>Options:<br>A. 51°<br>B. 70°<br>C. 80°<br>D. Not enough information<br><br>Answer: 51°</code> | <code>Thinks angles which look the same on diagram will be equal</code> | <code>Fails to use the properties of simple shapes to work out missing lengths</code> |
242
- | <code>Construct: Simplify an algebraic fraction by factorising the numerator.<br><br>Question: Simplify the following, if possible: (m^2+2 m-3 / m-3).<br><br>Options:<br>A. m+1<br>B. m+2<br>C. m-1<br>D. Does not simplify<br><br>Answer: m+2</code> | <code>Thinks that when you cancel identical terms from the numerator and denominator, they just disappear</code> | <code>Believes you add the whole to the numerators, ignoring denominators, when adding a mixed number to a proper fraction with the same denominator.</code> |
243
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
244
  ```json
245
  {
@@ -253,19 +316,19 @@ You can finetune this model on your own dataset.
253
  #### csv
254
 
255
  * Dataset: csv
256
- * Size: 19,280 evaluation samples
257
- * Columns: <code>qa_pair_text</code>, <code>MisconceptionName</code>, and <code>negative</code>
258
  * Approximate statistics based on the first 1000 samples:
259
- | | qa_pair_text | MisconceptionName | negative |
260
- |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
261
- | type | string | string | string |
262
- | details | <ul><li>min: 35 tokens</li><li>mean: 94.39 tokens</li><li>max: 903 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.31 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.7 tokens</li><li>max: 39 tokens</li></ul> |
263
  * Samples:
264
- | qa_pair_text | MisconceptionName | negative |
265
- |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
266
- | <code>Construct: Convert from hours to minutes.<br><br>Question: 3 hours is the same as ___________ minutes.<br><br>Options:<br>A. 180<br>B. 90<br>C. 30<br>D. 300<br><br>Answer: 30</code> | <code>Thinks there are 10 minutes in an hour</code> | <code>Incorrectly converted cm to m</code> |
267
- | <code>Construct: Rearrange formulae to change the subject where the subject appears once and two steps are needed.<br><br>Question: Rearrange the following equation to make v the subject<br>F=(v^2 / r).<br><br>Options:<br>A. v=r F^2<br>B. v=square root of ((F / r))<br>C. v=square root of (r F)<br>D. v=r square root of (F)<br><br>Answer: v=r F^2</code> | <code>When solving an equation, uses the same operation rather than the inverse.</code> | <code>Confuses the lines y=x and y=-x</code> |
268
- | <code>Construct: Use the order of operations to carry out calculations involving powers.<br><br>Question: 2 x 3^2=.<br><br>Options:<br>A. 18<br>B. 12<br>C. 36<br>D. 11<br><br>Answer: 12</code> | <code>Mixes up squaring and multiplying by 2 or doubling</code> | <code>Thinks they solve mx + c = a, by substituting in the value of a for x and therefore calculating ma + c</code> |
269
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
270
  ```json
271
  {
@@ -278,15 +341,18 @@ You can finetune this model on your own dataset.
278
  #### Non-Default Hyperparameters
279
 
280
  - `eval_strategy`: steps
281
- - `gradient_accumulation_steps`: 128
282
- - `learning_rate`: 5e-06
 
283
  - `weight_decay`: 0.01
284
  - `num_train_epochs`: 20
285
- - `lr_scheduler_type`: cosine_with_restarts
286
  - `lr_scheduler_kwargs`: {'num_cycles': 10}
287
  - `warmup_ratio`: 0.1
288
  - `fp16`: True
289
  - `load_best_model_at_end`: True
 
 
290
  - `batch_sampler`: no_duplicates
291
 
292
  #### All Hyperparameters
@@ -296,14 +362,14 @@ You can finetune this model on your own dataset.
296
  - `do_predict`: False
297
  - `eval_strategy`: steps
298
  - `prediction_loss_only`: True
299
- - `per_device_train_batch_size`: 8
300
- - `per_device_eval_batch_size`: 8
301
  - `per_gpu_train_batch_size`: None
302
  - `per_gpu_eval_batch_size`: None
303
- - `gradient_accumulation_steps`: 128
304
  - `eval_accumulation_steps`: None
305
  - `torch_empty_cache_steps`: None
306
- - `learning_rate`: 5e-06
307
  - `weight_decay`: 0.01
308
  - `adam_beta1`: 0.9
309
  - `adam_beta2`: 0.999
@@ -311,7 +377,7 @@ You can finetune this model on your own dataset.
311
  - `max_grad_norm`: 1.0
312
  - `num_train_epochs`: 20
313
  - `max_steps`: -1
314
- - `lr_scheduler_type`: cosine_with_restarts
315
  - `lr_scheduler_kwargs`: {'num_cycles': 10}
316
  - `warmup_ratio`: 0.1
317
  - `warmup_steps`: 0
@@ -376,8 +442,8 @@ You can finetune this model on your own dataset.
376
  - `hub_strategy`: every_save
377
  - `hub_private_repo`: False
378
  - `hub_always_push`: False
379
- - `gradient_checkpointing`: False
380
- - `gradient_checkpointing_kwargs`: None
381
  - `include_inputs_for_metrics`: False
382
  - `eval_do_concat_batches`: True
383
  - `fp16_backend`: auto
@@ -407,51 +473,42 @@ You can finetune this model on your own dataset.
407
  </details>
408
 
409
  ### Training Logs
410
- | Epoch | Step | Training Loss | loss |
411
- |:-----------:|:-------:|:-------------:|:----------:|
412
- | 0.5029 | 6 | 1.77 | - |
413
- | 1.0059 | 12 | 1.6522 | 1.7033 |
414
- | 1.5088 | 18 | 1.425 | - |
415
- | 2.0118 | 24 | 1.3033 | 1.4015 |
416
- | 2.5147 | 30 | 1.1269 | - |
417
- | 3.0177 | 36 | 1.0721 | 1.2334 |
418
- | 3.5206 | 42 | 1.003 | - |
419
- | 4.0236 | 48 | 0.9973 | 1.1137 |
420
- | 4.5265 | 54 | 0.884 | - |
421
- | 5.0295 | 60 | 0.8756 | 1.0447 |
422
- | 5.5324 | 66 | 0.8231 | - |
423
- | 6.0354 | 72 | 0.7954 | 0.9564 |
424
- | 6.5383 | 78 | 0.724 | - |
425
- | 7.0413 | 84 | 0.7424 | 0.9185 |
426
- | 7.5442 | 90 | 0.6681 | - |
427
- | 8.0472 | 96 | 0.6536 | 0.8554 |
428
- | 8.5501 | 102 | 0.6139 | - |
429
- | 9.0530 | 108 | 0.618 | 0.8165 |
430
- | 9.5560 | 114 | 0.5491 | - |
431
- | 10.0589 | 120 | 0.5586 | 0.7942 |
432
- | 10.5619 | 126 | 0.5173 | - |
433
- | 11.0648 | 132 | 0.5039 | 0.7495 |
434
- | 11.5678 | 138 | 0.4599 | - |
435
- | 12.0707 | 144 | 0.4761 | 0.7338 |
436
- | 12.5737 | 150 | 0.4293 | - |
437
- | 13.0766 | 156 | 0.4226 | 0.7111 |
438
- | 13.5796 | 162 | 0.3967 | - |
439
- | 14.0825 | 168 | 0.4 | 0.6934 |
440
- | 14.5855 | 174 | 0.3568 | - |
441
- | 15.0884 | 180 | 0.3634 | 0.6852 |
442
- | 15.5914 | 186 | 0.3412 | - |
443
- | 16.0943 | 192 | 0.3374 | 0.6702 |
444
- | 16.5972 | 198 | 0.3127 | - |
445
- | 17.1002 | 204 | 0.3235 | 0.6611 |
446
- | 17.6031 | 210 | 0.2903 | - |
447
- | **18.1061** | **216** | **0.2943** | **0.6571** |
448
 
449
  * The bold row denotes the saved checkpoint.
450
 
451
  ### Framework Versions
452
  - Python: 3.10.14
453
  - Sentence Transformers: 3.1.1
454
- - Transformers: 4.44.2
455
  - PyTorch: 2.4.0
456
  - Accelerate: 0.33.0
457
  - Datasets: 2.19.2
 
7
  - sentence-similarity
8
  - feature-extraction
9
  - generated_from_trainer
10
+ - dataset_size:2442
11
  - loss:MultipleNegativesRankingLoss
12
  widget:
13
+ - source_sentence: 'Construct: Interpret sloping linear sections of a displacement-time
14
+ graph.
15
+
16
+
17
+ Question: This graph shows how far Fido the dog is from his home.
18
+
19
+ What might the negative-sloping section represent? A graph with time (secs) on
20
+ the horizontal axis and distance (m) on the vertical axis. The graph starts at
21
+ the origin, travels in a straight line up and right, travels horizontally, then
22
+ travels in a straight line down and right back to the x-axis.
23
+
24
+
25
+ Options:
26
+
27
+ A. Fido is walking home
28
+
29
+ B. Fido has fallen asleep
30
 
31
+ C. Fido is accelerating
32
 
33
+ D. Fido is walking away from home
 
34
 
35
 
36
+ Correct Answer: Fido is walking home
37
 
 
38
 
39
+ Incorrect Answer: Fido is walking away from home
40
+
41
+
42
+ Predicted Misconception: Negative slope indicates movement away, not towards a
43
+ starting point.'
44
+ sentences:
45
+ - Does not realise you can use equivalent fractions to break fractions up into smaller
46
+ divisions
47
+ - Divides by the order of the root
48
+ - Believes a downward slope on a distance-time graph means travelling away
49
+ - source_sentence: 'Construct: Identify reflex angles.
50
 
51
 
52
+ Question: An angle measures 192^degree .
53
+
54
+ This means it is...
55
 
56
 
57
  Options:
58
 
59
+ A. Acute
60
+
61
+ B. Obtuse
62
+
63
+ C. Reflex
64
 
65
+ D. A right angle
66
 
 
67
 
68
+ Correct Answer: Reflex
69
 
70
 
71
+ Incorrect Answer: Obtuse
72
+
73
+
74
+ Predicted Misconception: Believing an angle greater than 180 degrees but less
75
+ than 360 degrees is obtuse.'
76
  sentences:
77
+ - Multiplies rather than divides
78
+ - Confuses factors and multiples
79
+ - Does not understand that an obtuse angle is between 90 and 180 degrees
80
+ - source_sentence: 'Construct: Solve quadratic equations using factorisation in the
81
+ form (x + a)(x + b).
82
+
83
+
84
+ Question: In which region would x^2-10 x-25=0 belong? A Venn diagram made up
85
+ of two overlapping circles. One is labelled ''Factorises'' and the other is labelled
86
+ ''Has one solution equal to 0''.
87
+
88
+ A is in the ''Factorises'' circle only, B is in the overlap of the two circles,
89
+ C is in the ''Has one solution equal to 0'' circle only, and D is outside the
90
+ circles.
91
+
92
+
93
+ Options:
94
+
95
+ A. A
96
+
97
+ B. B
98
+
99
+ C. C
100
+
101
+ D. D
102
+
103
+
104
+ Correct Answer: D
105
+
106
+
107
+ Incorrect Answer: C
108
+
109
+
110
+ Predicted Misconception: Equating factorization with having a solution equal to
111
+ zero.'
112
  sentences:
113
+ - Believes all quadratic equations have a solution of 0
114
+ - Believes order of operations does not affect the answer to a calculation
115
+ - Does not realise that the sum of the two shorter sides must be greater than the
116
+ third side for it to be a possible triangle
117
+ - source_sentence: 'Construct: Factorise a quadratic expression in the form ax² +
118
+ bx + c where a is prime.
119
+
120
 
121
+ Question: Step 1: Factorise the following expression
122
 
123
+
124
+ (
125
+
126
+ 3 x^2+5 x+2
127
+
128
+ ).
129
 
130
 
131
  Options:
132
 
133
+ A. (3 x+2)(3 x+1)
134
+
135
+ B. (3 x+2)(x+1)
136
+
137
+ C. Cannot be factorised
138
+
139
+ D. (3 x+1)(x+2)
140
 
 
141
 
142
+ Correct Answer: (3 x+2)(x+1)
143
 
 
144
 
145
+ Incorrect Answer: (3 x+2)(3 x+1)
146
 
147
+
148
+ Predicted Misconception: Belief that all quadratic expressions with prime coefficients
149
+ can only be factorized using prime numbers in both factors.'
150
  sentences:
151
+ - Does not divide by 2 when calculating the area of a trapezium
152
+ - Mixes up squaring and multiplying by 2 or doubling
153
+ - When factorising a quadratic with a non-unit coefficient of x squared, believes
154
+ that coefficient will be in front of both x terms in the factorised form
155
+ - source_sentence: 'Construct: Substitute negative integer values into expressions
156
+ involving no powers or roots.
157
 
158
 
159
+ Question: If d=-2 what is the value of 10-2 d ?
 
160
 
161
 
162
  Options:
163
 
164
+ A. -12
165
+
166
+ B. 6
167
+
168
+ C. 14
169
+
170
+ D. 32
171
+
172
 
173
+ Correct Answer: 14
 
174
 
 
 
175
 
176
+ Incorrect Answer: 6
 
177
 
178
 
179
+ Predicted Misconception: Incorrectly subtracting instead of multiplying the variable.'
 
180
  sentences:
181
+ - Believes multiplying two negatives gives a negative answer
182
+ - Includes the x variable when giving the equation of a horizontal line
183
+ - Believes multiplying two negatives gives a negative answer
184
  ---
185
 
186
  # SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
 
233
  model = SentenceTransformer("Gurveer05/gte-base-eedi-2024")
234
  # Run inference
235
  sentences = [
236
+ 'Construct: Substitute negative integer values into expressions involving no powers or roots.\n\nQuestion: If d=-2 what is the value of 10-2 d ?\n\nOptions:\nA. -12\nB. 6\nC. 14\nD. 32\n\nCorrect Answer: 14\n\nIncorrect Answer: 6\n\nPredicted Misconception: Incorrectly subtracting instead of multiplying the variable.',
237
+ 'Believes multiplying two negatives gives a negative answer',
238
+ 'Believes multiplying two negatives gives a negative answer',
239
  ]
240
  embeddings = model.encode(sentences)
241
  print(embeddings.shape)
 
290
  #### csv
291
 
292
  * Dataset: csv
293
+ * Size: 2,442 training samples
294
+ * Columns: <code>qa_pair_text</code> and <code>MisconceptionName</code>
295
  * Approximate statistics based on the first 1000 samples:
296
+ | | qa_pair_text | MisconceptionName |
297
+ |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
298
+ | type | string | string |
299
+ | details | <ul><li>min: 57 tokens</li><li>mean: 121.87 tokens</li><li>max: 621 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.09 tokens</li><li>max: 40 tokens</li></ul> |
300
  * Samples:
301
+ | qa_pair_text | MisconceptionName |
302
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|
303
+ | <code>Construct: Solve two-step linear equations, with the variable on one side, with all positive integers.<br><br>Question: Tom and Katie are discussing how to solve:<br>(<br>(8 x / 5)=40<br>)<br><br>Tom says a correct next line of working could be: 8 x = 8 <br>Katie says a correct next line of working could be: (x / 5)=5 <br>Who is correct?<br><br>Options:<br>A. Only<br>Tom<br>B. Only Katie<br>C. Both Tom and Katie<br>D. Neither is correct<br><br>Correct Answer: Only Katie<br><br>Incorrect Answer: Neither is correct<br><br>Predicted Misconception: Multiplying both sides by 5 instead of dividing by 8 to isolate x.</code> | <code>When dividing a fraction by an integer, divides both the numerator and denominator by the integer</code> |
304
+ | <code>Construct: Rearrange a quadratic equation so that it is in the correct form to be factorised.<br><br>Question: What would be the most useful first step if we wanted to solve the following quadratic equation? x^2+7 x = 8.<br><br>Options:<br>A. Divide by x<br>B. Square root both sides of the equation<br>C. Subtract 7 x from both sides of the equation<br>D. Subtract 8 from both sides of the equation<br><br>Correct Answer: Subtract 8 from both sides of the equation<br><br>Incorrect Answer: Subtract 7 x from both sides of the equation<br><br>Predicted Misconception: Subtracting terms incorrectly from both sides to isolate the constant term.</code> | <code>Does not realise a quadratic must be in the form ax^2+bx+c=0 to be factorised</code> |
305
+ | <code>Construct: Multiply proper fractions in the form: Fraction × Integer.<br><br>Question: (1 / 2) x 3=.<br><br>Options:<br>A. (3 / 2)<br>B. 3 (1 / 2)<br>C. (3 / 6)<br>D. (1 / 6)<br><br>Correct Answer: (3 / 2)<br><br>Incorrect Answer: (3 / 6)<br><br>Predicted Misconception: Multiplying a fraction by an integer results in a larger fraction, not a smaller one.</code> | <code>When multiplying fractions, multiplies both the numerator and denominator</code> |
306
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
307
  ```json
308
  {
 
316
  #### csv
317
 
318
  * Dataset: csv
319
+ * Size: 1,928 evaluation samples
320
+ * Columns: <code>qa_pair_text</code> and <code>MisconceptionName</code>
321
  * Approximate statistics based on the first 1000 samples:
322
+ | | qa_pair_text | MisconceptionName |
323
+ |:--------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
324
+ | type | string | string |
325
+ | details | <ul><li>min: 52 tokens</li><li>mean: 125.81 tokens</li><li>max: 1093 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.45 tokens</li><li>max: 39 tokens</li></ul> |
326
  * Samples:
327
+ | qa_pair_text | MisconceptionName |
328
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
329
+ | <code>Construct: Calculate the square root of a number.<br><br>Question: What is the square root of nine?<br><br>Options:<br>A. 3<br>B. 4.5<br>C. 81<br>D. 18<br><br>Correct Answer: 3<br><br>Incorrect Answer: 4.5<br><br>Predicted Misconception: Believing square roots result in non-integer values when the original number is a perfect square.</code> | <code>Halves when asked to find the square root</code> |
330
+ | <code>Construct: Read values off a real life graph.<br><br>Question: A linear graph showing that 10 miles = £8. The graph can be used to work out how much Kay's company pays her for travel.<br><br>Kay's company paid her £ 80 <br><br>How many miles did she travel?<br><br>Options:<br>A. 96<br>B. 100<br>C. 64<br>D. 80<br><br>Correct Answer: 100<br><br>Incorrect Answer: 80<br><br>Predicted Misconception: Assuming a direct correlation without calculating the proportional relationship between miles and cost.</code> | <code>Believes direct proportion means a 1:1 ratio</code> |
331
+ | <code>Construct: Calculate compound area involving just rectangles and squares, where the dimensions are given in the same units.<br><br>Question: What is the area of this compound shape made with rectangles? Compound shape made of two rectangles with the sides labelled 15 cm, 12 cm, 7 cm and 7 cm. Two sides are unlabelled.<br><br>Options:<br>A. 124 cm^2<br>B. 154 cm^2<br>C. 180 cm^2<br>D. 189 cm^2<br><br>Correct Answer: 124 cm^2<br><br>Incorrect Answer: 154 cm^2<br><br>Predicted Misconception: Incorrectly calculating the area of one rectangle and adding it to the other without considering the overlapping section.</code> | <code>Makes an assumption about line segments being equal within a shape</code> |
332
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
333
  ```json
334
  {
 
341
  #### Non-Default Hyperparameters
342
 
343
  - `eval_strategy`: steps
344
+ - `per_device_train_batch_size`: 64
345
+ - `per_device_eval_batch_size`: 64
346
+ - `gradient_accumulation_steps`: 8
347
  - `weight_decay`: 0.01
348
  - `num_train_epochs`: 20
349
+ - `lr_scheduler_type`: cosine
350
  - `lr_scheduler_kwargs`: {'num_cycles': 10}
351
  - `warmup_ratio`: 0.1
352
  - `fp16`: True
353
  - `load_best_model_at_end`: True
354
+ - `gradient_checkpointing`: True
355
+ - `gradient_checkpointing_kwargs`: {'use_reentrant': False}
356
  - `batch_sampler`: no_duplicates
357
 
358
  #### All Hyperparameters
 
362
  - `do_predict`: False
363
  - `eval_strategy`: steps
364
  - `prediction_loss_only`: True
365
+ - `per_device_train_batch_size`: 64
366
+ - `per_device_eval_batch_size`: 64
367
  - `per_gpu_train_batch_size`: None
368
  - `per_gpu_eval_batch_size`: None
369
+ - `gradient_accumulation_steps`: 8
370
  - `eval_accumulation_steps`: None
371
  - `torch_empty_cache_steps`: None
372
+ - `learning_rate`: 5e-05
373
  - `weight_decay`: 0.01
374
  - `adam_beta1`: 0.9
375
  - `adam_beta2`: 0.999
 
377
  - `max_grad_norm`: 1.0
378
  - `num_train_epochs`: 20
379
  - `max_steps`: -1
380
+ - `lr_scheduler_type`: cosine
381
  - `lr_scheduler_kwargs`: {'num_cycles': 10}
382
  - `warmup_ratio`: 0.1
383
  - `warmup_steps`: 0
 
442
  - `hub_strategy`: every_save
443
  - `hub_private_repo`: False
444
  - `hub_always_push`: False
445
+ - `gradient_checkpointing`: True
446
+ - `gradient_checkpointing_kwargs`: {'use_reentrant': False}
447
  - `include_inputs_for_metrics`: False
448
  - `eval_do_concat_batches`: True
449
  - `fp16_backend`: auto
 
473
  </details>
474
 
475
  ### Training Logs
476
+ | Epoch | Step | Training Loss | loss |
477
+ |:--------:|:------:|:-------------:|:----------:|
478
+ | 0.8 | 2 | 2.6135 | - |
479
+ | 1.2 | 3 | - | 1.0560 |
480
+ | 1.6 | 4 | 2.058 | - |
481
+ | 2.4 | 6 | 1.7173 | 0.8711 |
482
+ | 3.2 | 8 | 1.5537 | - |
483
+ | 3.6 | 9 | - | 0.7901 |
484
+ | 4.0 | 10 | 1.4489 | - |
485
+ | 4.8 | 12 | 1.4622 | 0.7437 |
486
+ | 5.6 | 14 | 1.2437 | - |
487
+ | 6.0 | 15 | - | 0.7079 |
488
+ | 6.4 | 16 | 1.1761 | - |
489
+ | 7.2 | 18 | 1.0282 | 0.6748 |
490
+ | 8.0 | 20 | 0.9983 | - |
491
+ | 8.4 | 21 | - | 0.6437 |
492
+ | 8.8 | 22 | 0.9676 | - |
493
+ | 9.6 | 24 | 0.8342 | 0.6169 |
494
+ | 10.4 | 26 | 0.7937 | - |
495
+ | 10.8 | 27 | - | 0.5950 |
496
+ | 11.2 | 28 | 0.6869 | - |
497
+ | 12.0 | 30 | 0.6558 | 0.5807 |
498
+ | 12.8 | 32 | 0.6286 | - |
499
+ | 13.2 | 33 | - | 0.5732 |
500
+ | 13.6 | 34 | 0.5468 | - |
501
+ | **14.4** | **36** | **0.4923** | **0.5694** |
502
+ | 15.2 | 38 | 0.4477 | - |
503
+ | 15.6 | 39 | - | 0.5727 |
504
+ | 16.0 | 40 | 0.4108 | - |
 
 
 
 
 
 
 
 
 
505
 
506
  * The bold row denotes the saved checkpoint.
507
 
508
  ### Framework Versions
509
  - Python: 3.10.14
510
  - Sentence Transformers: 3.1.1
511
+ - Transformers: 4.44.0
512
  - PyTorch: 2.4.0
513
  - Accelerate: 0.33.0
514
  - Datasets: 2.19.2
config.json CHANGED
@@ -36,7 +36,7 @@
36
  },
37
  "rope_theta": 500000,
38
  "torch_dtype": "float32",
39
- "transformers_version": "4.44.2",
40
  "type_vocab_size": 0,
41
  "unpad_inputs": false,
42
  "use_memory_efficient_attention": false,
 
36
  },
37
  "rope_theta": 500000,
38
  "torch_dtype": "float32",
39
+ "transformers_version": "4.44.0",
40
  "type_vocab_size": 0,
41
  "unpad_inputs": false,
42
  "use_memory_efficient_attention": false,
config_sentence_transformers.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "__version__": {
3
  "sentence_transformers": "3.1.1",
4
- "transformers": "4.44.2",
5
  "pytorch": "2.4.0"
6
  },
7
  "prompts": {},
 
1
  {
2
  "__version__": {
3
  "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.0",
5
  "pytorch": "2.4.0"
6
  },
7
  "prompts": {},
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:37c8c47929fe161302244502858129819816a608e0b3f1baa92877d63de1cde0
3
  size 547119128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:665965611c704f9f1f96ba10bbd209db8453d86adc1022de8aa4c91eb0e2eaca
3
  size 547119128