SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Gurveer05/gte-base-eedi-2024")
# Run inference
sentences = [
'believes percentages cannot be converted into fractions\n\nconvert two digit integer percentages to fractions(converting between fractions and percentages).\nquestion: convert this percentage to a fraction\n 62 \\% \ncorrect answer: \\frac{31}{50} \nincorrect answer: none of these',
'Does not understand a percentage is out of 100',
'Believes the gradients of perpendicular lines are reciprocals of the same sign',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 218,496 training samples
- Columns:
FullText
,GroundTruthMisconception
, andPredictMisconception
- Approximate statistics based on the first 1000 samples:
FullText GroundTruthMisconception PredictMisconception type string string string details - min: 58 tokens
- mean: 95.45 tokens
- max: 159 tokens
- min: 8 tokens
- mean: 17.0 tokens
- max: 38 tokens
- min: 6 tokens
- mean: 15.27 tokens
- max: 40 tokens
- Samples:
FullText GroundTruthMisconception PredictMisconception believes that the order of operations does not affect the answer to a calculation
use the order of operations to carry out calculations involving powers(bidmas).
question: [
3 \times 2+4-5
]
where do the brackets need to go to make the answer equal 13 ?
correct answer: 3 \times(2+4)-5
incorrect answer: does not need bracketsConfuses the order of operations, believes addition comes before multiplication
Believes infinite gradient is not possible in real life.
believes that the order of operations does not affect the answer to a calculation
use the order of operations to carry out calculations involving powers(bidmas).
question: [
3 \times 2+4-5
]
where do the brackets need to go to make the answer equal 13 ?
correct answer: 3 \times(2+4)-5
incorrect answer: does not need bracketsConfuses the order of operations, believes addition comes before multiplication
Struggles to draw 3D shapes on isometric paper
believes that the order of operations does not affect the answer to a calculation
use the order of operations to carry out calculations involving powers(bidmas).
question: [
3 \times 2+4-5
]
where do the brackets need to go to make the answer equal 13 ?
correct answer: 3 \times(2+4)-5
incorrect answer: does not need bracketsConfuses the order of operations, believes addition comes before multiplication
Believes an upward slope on a distance-time graph means travelling back towards the starting point.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
gradient_accumulation_steps
: 16eval_accumulation_steps
: 16learning_rate
: 2e-05weight_decay
: 0.01num_train_epochs
: 2lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: 16learning_rate
: 2e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.1757 | 300 | 0.9143 |
0.3515 | 600 | 0.8284 |
0.5272 | 900 | 0.8444 |
0.7030 | 1200 | 0.7999 |
0.8787 | 1500 | 0.8901 |
1.0512 | 1800 | 0.8029 |
1.2269 | 2100 | 0.6198 |
1.4027 | 2400 | 0.5837 |
1.5784 | 2700 | 0.603 |
1.7542 | 3000 | 0.5336 |
1.9299 | 3300 | 0.5977 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.1.0
- Transformers: 4.42.3
- PyTorch: 2.3.0+cu121
- Accelerate: 0.32.1
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.