bert-large-cased-finetuned-ner-lenerBr

This model is a fine-tuned version of google-bert/bert-large-cased on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.8046
  • Recall: 0.8298
  • F1: 0.8170
  • Accuracy: 0.9645

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9974 244 nan 0.6627 0.7490 0.7032 0.9402
No log 1.9990 489 nan 0.7002 0.8005 0.7470 0.9503
0.1592 2.9964 733 nan 0.7482 0.8080 0.7769 0.9545
0.1592 3.9980 978 nan 0.7749 0.8166 0.7952 0.9614
0.0279 4.9995 1223 nan 0.7845 0.7973 0.7909 0.9634
0.0279 5.9969 1467 nan 0.7840 0.8203 0.8017 0.9622
0.0122 6.9985 1712 nan 0.7989 0.8224 0.8105 0.9638
0.0122 8.0 1957 nan 0.7977 0.8286 0.8129 0.9634
0.007 8.9974 2201 nan 0.7947 0.8265 0.8103 0.9643
0.007 9.9745 2440 nan 0.8046 0.8298 0.8170 0.9645

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
333M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for GuiTap/bert-large-cased-finetuned-ner-lenerBr

Finetuned
(116)
this model

Dataset used to train GuiTap/bert-large-cased-finetuned-ner-lenerBr

Evaluation results