metadata
library_name: transformers
language:
- hr
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-v3-turbo-hr-parla
results: []
whisper-large-v3-turbo-hr-parla
This model is a fine-tuned version of openai/whisper-large-v3 on the classla/ParlaSpeech-HR dataset and additional 400h private dataset, both with augmented additions.
It achieves the following results on the evaluation set:
- Loss: 0.0816
- Wer: 3.52%
WER comparsion
Dataset | Model | WER (%) |
---|---|---|
google/fleurs hr_hr test | openai/whisper-base | 65.99 |
google/fleurs hr_hr test | openai/whisper-large-v3-turbo | 12.73 |
google/fleurs hr_hr test | slsolucije/whisper-large-v3-turbo-hr-parla-lora-merged | 9.93 |
google/fleurs hr_hr test | GoranS/whisper-large-v3-turbo-hr-parla | 8.66 |
GoranS/stt-croatian_99k_265_2 test | openai/whisper-large-v3-turbo | 22.93 |
GoranS/stt-croatian_99k_265_2 test | slsolucije/whisper-large-v3-turbo-hr-parla-lora-merged | 19.02 |
GoranS/stt-croatian_99k_265_2 test | GoranS/whisper-large-v3-turbo-hr-parla | 18.44 |
GoranS/stt-croatian-sl-31k test | openai/whisper-large-v3-turbo | 21.62 |
GoranS/stt-croatian-sl-31k test | slsolucije/whisper-large-v3-turbo-hr-parla-lora-merged | 17.07 |
GoranS/stt-croatian-sl-31k test | GoranS/whisper-large-v3-turbo-hr-parla | 16.97 |
parla_867k_2483_0.5 test | openai/whisper-large-v3-turbo | 10.23 |
parla_867k_2483_0.5 test | slsolucije/whisper-large-v3-turbo-hr-parla-lora-merged | 4.58 |
parla_867k_2483_0.5 test | GoranS/whisper-large-v3-turbo-hr-parla | 3.52 |
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.25e-06
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1485 | 0.0703 | 1000 | 0.1376 | 0.0610 |
0.1399 | 0.1406 | 2000 | 0.1210 | 0.0545 |
0.1311 | 0.2108 | 3000 | 0.1144 | 0.0529 |
0.119 | 0.2811 | 4000 | 0.1058 | 0.0487 |
0.1165 | 0.3514 | 5000 | 0.1067 | 0.0517 |
0.1142 | 0.4217 | 6000 | 0.1007 | 0.0464 |
0.1095 | 0.4920 | 7000 | 0.1019 | 0.0447 |
0.1112 | 0.5622 | 8000 | 0.0974 | 0.0425 |
0.1104 | 0.6325 | 9000 | 0.0971 | 0.0442 |
0.1081 | 0.7028 | 10000 | 0.0943 | 0.0411 |
0.1025 | 0.7731 | 11000 | 0.0905 | 0.0397 |
0.1042 | 0.8433 | 12000 | 0.0930 | 0.0419 |
0.1031 | 0.9136 | 13000 | 0.0923 | 0.0428 |
0.1038 | 0.9839 | 14000 | 0.0894 | 0.0408 |
0.0878 | 1.0542 | 15000 | 0.0902 | 0.0408 |
0.0886 | 1.1245 | 16000 | 0.0869 | 0.0369 |
0.0864 | 1.1947 | 17000 | 0.0861 | 0.0364 |
0.0817 | 1.2650 | 18000 | 0.0867 | 0.0408 |
0.0899 | 1.3353 | 19000 | 0.0852 | 0.0383 |
0.0868 | 1.4056 | 20000 | 0.0846 | 0.0369 |
0.0858 | 1.4759 | 21000 | 0.0844 | 0.0378 |
0.0827 | 1.5461 | 22000 | 0.0845 | 0.0391 |
0.0798 | 1.6164 | 23000 | 0.0846 | 0.0378 |
0.0845 | 1.6867 | 24000 | 0.0833 | 0.0375 |
0.0768 | 1.7570 | 25000 | 0.0840 | 0.0375 |
0.0799 | 1.8273 | 26000 | 0.0837 | 0.0375 |
0.0808 | 1.8975 | 27000 | 0.0825 | 0.0352 |
0.0837 | 1.9678 | 28000 | 0.0816 | 0.0352 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3