GoranS's picture
Update README.md
3247238 verified
metadata
library_name: transformers
language:
  - hr
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-large-v3-turbo-hr-parla
    results: []

whisper-large-v3-turbo-hr-parla

This model is a fine-tuned version of openai/whisper-large-v3 on the classla/ParlaSpeech-HR dataset and additional 400h private dataset, both with augmented additions.

It achieves the following results on the evaluation set:

  • Loss: 0.0816
  • Wer: 3.52%

WER comparsion

Dataset Model WER (%)
google/fleurs hr_hr test openai/whisper-base 65.99
google/fleurs hr_hr test openai/whisper-large-v3-turbo 12.73
google/fleurs hr_hr test slsolucije/whisper-large-v3-turbo-hr-parla-lora-merged 9.93
google/fleurs hr_hr test GoranS/whisper-large-v3-turbo-hr-parla 8.66
GoranS/stt-croatian_99k_265_2 test openai/whisper-large-v3-turbo 22.93
GoranS/stt-croatian_99k_265_2 test slsolucije/whisper-large-v3-turbo-hr-parla-lora-merged 19.02
GoranS/stt-croatian_99k_265_2 test GoranS/whisper-large-v3-turbo-hr-parla 18.44
GoranS/stt-croatian-sl-31k test openai/whisper-large-v3-turbo 21.62
GoranS/stt-croatian-sl-31k test slsolucije/whisper-large-v3-turbo-hr-parla-lora-merged 17.07
GoranS/stt-croatian-sl-31k test GoranS/whisper-large-v3-turbo-hr-parla 16.97
parla_867k_2483_0.5 test openai/whisper-large-v3-turbo 10.23
parla_867k_2483_0.5 test slsolucije/whisper-large-v3-turbo-hr-parla-lora-merged 4.58
parla_867k_2483_0.5 test GoranS/whisper-large-v3-turbo-hr-parla 3.52

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6.25e-06
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1485 0.0703 1000 0.1376 0.0610
0.1399 0.1406 2000 0.1210 0.0545
0.1311 0.2108 3000 0.1144 0.0529
0.119 0.2811 4000 0.1058 0.0487
0.1165 0.3514 5000 0.1067 0.0517
0.1142 0.4217 6000 0.1007 0.0464
0.1095 0.4920 7000 0.1019 0.0447
0.1112 0.5622 8000 0.0974 0.0425
0.1104 0.6325 9000 0.0971 0.0442
0.1081 0.7028 10000 0.0943 0.0411
0.1025 0.7731 11000 0.0905 0.0397
0.1042 0.8433 12000 0.0930 0.0419
0.1031 0.9136 13000 0.0923 0.0428
0.1038 0.9839 14000 0.0894 0.0408
0.0878 1.0542 15000 0.0902 0.0408
0.0886 1.1245 16000 0.0869 0.0369
0.0864 1.1947 17000 0.0861 0.0364
0.0817 1.2650 18000 0.0867 0.0408
0.0899 1.3353 19000 0.0852 0.0383
0.0868 1.4056 20000 0.0846 0.0369
0.0858 1.4759 21000 0.0844 0.0378
0.0827 1.5461 22000 0.0845 0.0391
0.0798 1.6164 23000 0.0846 0.0378
0.0845 1.6867 24000 0.0833 0.0375
0.0768 1.7570 25000 0.0840 0.0375
0.0799 1.8273 26000 0.0837 0.0375
0.0808 1.8975 27000 0.0825 0.0352
0.0837 1.9678 28000 0.0816 0.0352

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3