vit-base-patch16-224-finetuned-main-gpu-20e-final-1

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0272
  • Accuracy: 0.9918

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4776 1.0 551 0.4399 0.8125
0.3207 2.0 1102 0.2645 0.8978
0.2292 3.0 1653 0.1388 0.9468
0.1811 4.0 2204 0.0943 0.9662
0.1633 5.0 2755 0.0740 0.9723
0.1355 6.0 3306 0.0744 0.9727
0.1413 7.0 3857 0.0548 0.9813
0.1257 8.0 4408 0.0442 0.9844
0.1057 9.0 4959 0.0517 0.9821
0.1 10.0 5510 0.0376 0.9868
0.0873 11.0 6061 0.0410 0.9866
0.0974 12.0 6612 0.0430 0.9861
0.0673 13.0 7163 0.0421 0.9852
0.0913 14.0 7714 0.0339 0.9882
0.0594 15.0 8265 0.0327 0.9896
0.0608 16.0 8816 0.0379 0.9885
0.0725 17.0 9367 0.0288 0.9904
0.0742 18.0 9918 0.0284 0.9906
0.0708 19.0 10469 0.0273 0.9916
0.0648 20.0 11020 0.0272 0.9918

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results