GlycerinLOL's picture
Model save
b7e6ae0 verified
metadata
base_model: google/pegasus-large
tags:
  - generated_from_trainer
metrics:
  - rouge
  - precision
  - recall
  - f1
model-index:
  - name: LLM_Teached_Pegasus_100k_FS
    results: []

LLM_Teached_Pegasus_100k_FS

This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4433
  • Rouge1: 0.4961
  • Rouge2: 0.2476
  • Rougel: 0.4155
  • Rougelsum: 0.4154
  • Gen Len: 25.8629
  • Precision: 0.9136
  • Recall: 0.914
  • F1: 0.9137

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step F1 Gen Len Validation Loss Precision Recall Rouge1 Rouge2 Rougel Rougelsum
1.781 2.0 1388 0.9088 26.8891 1.5797 0.908 0.91 0.4708 0.2219 0.3892 0.389
1.6618 3.0 2083 0.91 26.7282 1.5411 0.9094 0.9111 0.4776 0.2303 0.3977 0.3973
1.626 4.0 2776 0.911 26.7596 1.5171 0.9102 0.9121 0.4834 0.2345 0.402 0.402
1.5918 5.0 3471 0.9112 26.6476 1.5001 0.9106 0.9122 0.4853 0.2365 0.4045 0.4045
1.5586 6.0 4164 0.9116 26.7778 1.4880 0.9108 0.9127 0.4875 0.2373 0.4063 0.4063
1.5375 7.0 4858 0.912 26.3991 1.4768 0.9116 0.9128 0.4898 0.24 0.4083 0.4083
1.5146 8.0 5553 0.9126 26.156 1.4686 0.9123 0.9133 0.4907 0.241 0.4088 0.4089
1.5006 9.0 6247 0.9127 26.2629 1.4636 0.9122 0.9135 0.4914 0.2419 0.4097 0.4099
1.49 10.0 6942 0.9127 26.0273 1.4580 0.9125 0.9133 0.4911 0.2429 0.4109 0.411
1.4749 11.0 7636 0.9131 26.2304 1.4546 0.9127 0.9138 0.4932 0.244 0.4121 0.4123
1.4661 12.0 8331 0.9132 25.8778 1.4514 0.9133 0.9136 0.4937 0.2448 0.4126 0.4127
1.4575 13.0 9025 0.9133 26.1151 1.4499 0.913 0.914 0.4947 0.2453 0.4139 0.414
1.4511 14.0 9720 0.9133 26.0287 1.4478 0.9131 0.9138 0.4939 0.2451 0.4133 0.4134
1.4519 15.0 10414 0.9133 25.9078 1.4471 0.9132 0.9137 0.4938 0.2451 0.4134 0.4134
1.4439 16.0 11104 1.4474 0.4942 0.2456 0.4133 0.4134 26.0345 0.9131 0.9139 0.9133
1.4441 17.0 11799 1.4447 0.4945 0.2457 0.4139 0.414 25.9391 0.9133 0.9138 0.9134
1.444 18.0 12493 1.4446 0.4957 0.2473 0.415 0.4151 26.0107 0.9133 0.9141 0.9135
1.4375 19.0 13188 1.4433 0.4961 0.2473 0.4153 0.4153 25.8869 0.9136 0.914 0.9136
1.4361 20.0 13880 1.4433 0.4961 0.2476 0.4155 0.4154 25.8629 0.9136 0.914 0.9137

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0