metadata
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Q-bert/MetaMath-Cybertron-Starling
- ozayezerceli/BetterSaul-7B-slerp
- chihoonlee10/T3Q-Mistral-Orca-Math-DPO
- EmbeddedLLM/Mistral-7B-Merge-14-v0.2
base_model:
- Q-bert/MetaMath-Cybertron-Starling
- ozayezerceli/BetterSaul-7B-slerp
- chihoonlee10/T3Q-Mistral-Orca-Math-DPO
- EmbeddedLLM/Mistral-7B-Merge-14-v0.2
StrangeMerges_45-7B-dare_ties
StrangeMerges_45-7B-dare_ties is a merge of the following models using LazyMergekit:
- Q-bert/MetaMath-Cybertron-Starling
- ozayezerceli/BetterSaul-7B-slerp
- chihoonlee10/T3Q-Mistral-Orca-Math-DPO
- EmbeddedLLM/Mistral-7B-Merge-14-v0.2
🧩 Configuration
models:
- model: Q-bert/MetaMath-Cybertron-Starling
parameters:
weight: 0.3
density: 0.53
- model: ozayezerceli/BetterSaul-7B-slerp
parameters:
weight: 0.2
density: 0.53
- model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO
parameters:
weight: 0.4
density: 0.53
- model: EmbeddedLLM/Mistral-7B-Merge-14-v0.2
parameters:
weight: 0.1
density: 0.53
base_model: Gille/StrangeMerges_44-7B-dare_ties
merge_method: dare_ties
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_45-7B-dare_ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])