Marvin
Initial commit
078ae09 unverified
|
raw
history blame
10.3 kB
metadata
language:
  - de
tags:
  - question-generation
  - german
  - text2text-generation
  - generated_from_trainer
datasets:
  - lmqg/qg_dequad
metrics:
  - bleu4
  - f1
  - rouge
  - exact_match
model-index:
  - name: german-jeopardy-mt5-base-128
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: lmqg/qg_dequad
          type: default
          args: default
        metrics:
          - name: BLEU-4
            type: bleu4
            value: 14.62
          - name: F1
            type: f1
            value: 39.47
          - name: ROUGE-1
            type: rouge1
            value: 40.45
          - name: ROUGE-2
            type: rouge2
            value: 21.49
          - name: ROUGE-L
            type: rougel
            value: 39.02
          - name: ROUGE-Lsum
            type: rougelsum
            value: 39.01
          - name: Exact Match
            type: exact_match
            value: 2.68

german-jeopardy-mt5-base-128

This model is a fine-tuned version of google/mt5-base on the lmqg/qg_dequad dataset. It achieves the following results on the evaluation set:

  • Loss: 1.56
  • Brevity Penalty: 0.8709
  • System Length: 18267
  • Reference Length: 20793
  • ROUGE-1: 40.45
  • ROUGE-2: 21.49
  • ROUGE-L: 39.02
  • ROUGE-Lsum: 39.01
  • Exact Match: 2.68
  • BLEU: 14.62
  • F1: 39.47

Model description

See google/mt5-base for the model architecture.
The model was trained on a single NVIDIA RTX 3090 GPU with 24GB of VRAM.

Intended uses & limitations

This model can be used for question generation on German text.

Training and evaluation data

See lmqg/qg_dequad.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 7
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • optimizer: Adafactor
  • lr_scheduler_type: constant
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Counts 1 Counts 2 Counts 3 Counts 4 Totals 1 Totals 2 Totals 3 Totals 4 Precisions 1 Precisions 2 Precisions 3 Precisions 4 Brevity Penalty System Length Reference Length ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum Exact Match BLEU Mean Generated Length F1
6.6905 0.99 72 2.0972 5515 1394 522 191 28172 25968 23764 21560 19.5762 5.3681 2.1966 0.8859 1.0 28172 21250 0.1942 0.0761 0.1837 0.1841 0.0 3.7816 11.2786 0.2106
2.4978 1.99 145 1.6211 7079 2339 1027 446 16544 14340 12136 9932 42.7889 16.311 8.4624 4.4905 0.7524 16544 21250 0.3097 0.1455 0.2971 0.2969 0.01 9.6021 12.0159 0.3032
2.1021 3.0 218 1.5342 7507 2637 1222 575 17211 15007 12803 10599 43.6175 17.5718 9.5446 5.425 0.7908 17211 21250 0.3304 0.1642 0.3172 0.3171 0.0141 11.162 12.6375 0.3228
1.9208 4.0 291 1.4862 7599 2755 1296 620 16871 14667 12463 10259 45.0418 18.7837 10.3988 6.0435 0.7714 16871 21250 0.3377 0.1721 0.3232 0.3229 0.015 11.7136 12.3938 0.33
1.8135 4.99 363 1.4626 7831 2955 1424 694 17184 14980 12776 10572 45.5715 19.7263 11.1459 6.5645 0.7893 17184 21250 0.3497 0.1837 0.3358 0.3354 0.0177 12.6402 12.6366 0.3417
1.6907 5.99 436 1.4392 7872 3023 1482 740 16907 14703 12499 10295 46.5606 20.5604 11.8569 7.188 0.7735 16907 21250 0.3566 0.1896 0.3432 0.343 0.0177 13.0722 12.564 0.3483
1.6159 6.99 509 1.4288 7981 3128 1542 773 17016 14812 12608 10404 46.9029 21.118 12.2303 7.4298 0.7797 17016 21250 0.363 0.1952 0.3504 0.3502 0.0191 13.5053 12.5749 0.3543
1.556 8.0 582 1.4132 8014 3046 1496 748 17320 15116 12912 10708 46.2702 20.1508 11.5861 6.9854 0.797 17320 21250 0.3632 0.1903 0.3489 0.3491 0.0222 13.2095 12.7641 0.355
1.4951 9.0 655 1.3926 8342 3271 1622 819 17178 14974 12770 10566 48.5621 21.8445 12.7016 7.7513 0.789 17178 21250 0.3843 0.2059 0.3704 0.3704 0.0218 14.1831 12.7654 0.3769
1.4522 9.99 727 1.3769 8639 3449 1740 891 17708 15504 13300 11096 48.7859 22.2459 13.0827 8.0299 0.8187 17708 21250 0.3972 0.2129 0.3821 0.3823 0.024 15.0442 13.1016 0.3895
1.3663 10.99 800 1.3677 8736 3468 1747 924 17674 15470 13266 11062 49.4285 22.4176 13.169 8.3529 0.8168 17674 21250 0.4027 0.215 0.3871 0.387 0.0245 15.2622 13.0399 0.3946
1.3122 11.99 873 1.3521 8833 3533 1780 915 17927 15723 13519 11315 49.272 22.4703 13.1667 8.0866 0.8308 17927 21250 0.4055 0.219 0.3915 0.3915 0.0222 15.3943 13.3494 0.3975
1.2641 13.0 946 1.3494 9048 3668 1864 989 18242 16038 13834 11630 49.5998 22.8707 13.474 8.5039 0.848 18242 21250 0.4165 0.2265 0.4011 0.401 0.0268 16.1011 13.5508 0.408
1.2359 13.99 1018 1.3488 9075 3709 1907 1013 18098 15894 13690 11486 50.1437 23.3359 13.9299 8.8194 0.8402 18098 21250 0.4195 0.2298 0.4041 0.4038 0.0259 16.3595 13.5681 0.4113
1.1754 14.99 1091 1.3482 9182 3777 1957 1048 18366 16162 13958 11754 49.9946 23.3696 14.0206 8.9161 0.8547 18366 21250 0.4227 0.2314 0.406 0.4058 0.0268 16.7083 13.6534 0.4145
1.1367 15.99 1164 1.3501 9164 3761 1935 1033 18310 16106 13902 11698 50.0492 23.3515 13.9189 8.8306 0.8517 18310 21250 0.4225 0.2316 0.4078 0.4079 0.0245 16.5803 13.6152 0.4147
1.096 17.0 1237 1.3586 9126 3712 1922 1050 18277 16073 13869 11665 49.9316 23.0946 13.8582 9.0013 0.8499 18277 21250 0.4217 0.2304 0.4066 0.4066 0.0295 16.5513 13.6325 0.4141
1.0571 18.0 1310 1.3658 9087 3707 1923 1033 18179 15975 13771 11567 49.9862 23.205 13.9641 8.9306 0.8446 18179 21250 0.4196 0.2301 0.4049 0.4049 0.029 16.4708 13.5172 0.4116
1.036 18.99 1382 1.3672 9206 3806 1976 1059 18332 16128 13924 11720 50.2182 23.5987 14.1913 9.0358 0.8528 18332 21250 0.4254 0.2348 0.4106 0.4107 0.0309 16.8386 13.7205 0.4174
0.9785 19.79 1440 1.3819 9180 3796 1973 1059 18164 15960 13756 11552 50.5395 23.7845 14.3428 9.1672 0.8438 18164 21250 0.4254 0.2344 0.4116 0.4117 0.0327 16.8234 13.5113 0.4172

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3