|
--- |
|
license: mit |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
tags: |
|
- agriculture |
|
|
|
|
|
|
|
widget: |
|
- text: "paddy pest" |
|
example_title: "Example- pest" |
|
- text: "how do I apply for PM-Kisan" |
|
example_title: "Example- scheme" |
|
- text: "Will it rain today" |
|
example_title: "Example- weather" |
|
--- |
|
|
|
# Agri-flow Classification Model |
|
|
|
This model classifies grievances into 7 distinct buckets: |
|
|
|
- agricultural_scheme |
|
- agriculture |
|
- pest |
|
- seed |
|
- weather |
|
- price |
|
- non_agri |
|
|
|
## Description of the Buckets |
|
|
|
1. **agricultural_scheme**: |
|
The farmer query is about schemes in Odisha |
|
|
|
2. **agriculture**: |
|
General agri queries |
|
|
|
3. **pest**: |
|
The farmer query is about pests |
|
|
|
4. **seed**: |
|
The farmer query is about seed varieties |
|
|
|
5. **weather** : |
|
The farmer query is asking about the weather for a district /place |
|
e.g. : 'What's the weather forecast for Sundargarh?' |
|
|
|
6. **price** : |
|
The farmer query is asking about the price of some crop |
|
e.g. 'Price for paddy' |
|
|
|
6. **non_agri** : |
|
The farmer query is just some salutation or unrelated to agri |
|
|
|
|
|
## Training Metrics |
|
|
|
Epoch 1/1000 - Loss: 0.8210 - Accuracy: 0.7443 - F1 Score: 0.7360 |
|
Validation Accuracy: 0.9037 |
|
Validation F1 Score: 0.9022 |
|
Epoch 2/1000 - Loss: 0.2868 - Accuracy: 0.9199 - F1 Score: 0.9197 |
|
Validation Accuracy: 0.9241 |
|
Validation F1 Score: 0.9236 |
|
Epoch 3/1000 - Loss: 0.1620 - Accuracy: 0.9536 - F1 Score: 0.9534 |
|
Validation Accuracy: 0.9408 |
|
Validation F1 Score: 0.9407 |
|
Epoch 4/1000 - Loss: 0.0975 - Accuracy: 0.9698 - F1 Score: 0.9698 |
|
Validation Accuracy: 0.9457 |
|
Validation F1 Score: 0.9461 |
|
Epoch 5/1000 - Loss: 0.0722 - Accuracy: 0.9777 - F1 Score: 0.9777 |
|
Validation Accuracy: 0.9518 |
|
Validation F1 Score: 0.9520 |
|
Epoch 6/1000 - Loss: 0.0570 - Accuracy: 0.9801 - F1 Score: 0.9801 |
|
Validation Accuracy: 0.9574 |
|
Validation F1 Score: 0.9573 |
|
Epoch 7/1000 - Loss: 0.0426 - Accuracy: 0.9838 - F1 Score: 0.9838 |
|
Validation Accuracy: 0.9601 |
|
Validation F1 Score: 0.9601 |
|
Epoch 8/1000 - Loss: 0.0403 - Accuracy: 0.9850 - F1 Score: 0.9850 |
|
Validation Accuracy: 0.9646 |
|
Validation F1 Score: 0.9646 |
|
Epoch 9/1000 - Loss: 0.0340 - Accuracy: 0.9853 - F1 Score: 0.9853 |
|
Validation Accuracy: 0.9623 |
|
Validation F1 Score: 0.9624 |
|
Epoch 10/1000 - Loss: 0.0307 - Accuracy: 0.9857 - F1 Score: 0.9857 |
|
Validation Accuracy: 0.9640 |
|
Validation F1 Score: 0.9640 |
|
Epoch 11/1000 - Loss: 0.0297 - Accuracy: 0.9873 - F1 Score: 0.9873 |
|
Validation Accuracy: 0.9618 |
|
Validation F1 Score: 0.9618 |
|
Epoch 12/1000 - Loss: 0.0279 - Accuracy: 0.9867 - F1 Score: 0.9867 |
|
Validation Accuracy: 0.9607 |
|
Validation F1 Score: 0.9607 |
|
|
|
|