GaetanMichelet's picture
End of training
ea95a66 verified
|
raw
history blame
2.48 kB
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-2_auto
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_60-samples_config-1_full_auto
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-31-8B_task-2_60-samples_config-1_full_auto
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-2_auto dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0304
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.4989 | 0.8696 | 5 | 1.5039 |
| 1.4648 | 1.9130 | 11 | 1.4134 |
| 1.3625 | 2.9565 | 17 | 1.3141 |
| 1.2061 | 4.0 | 23 | 1.2032 |
| 1.078 | 4.8696 | 28 | 1.1121 |
| 0.9963 | 5.9130 | 34 | 1.0649 |
| 0.9285 | 6.9565 | 40 | 1.0479 |
| 0.9295 | 8.0 | 46 | 1.0360 |
| 0.9178 | 8.8696 | 51 | 1.0304 |
| 0.9031 | 9.9130 | 57 | 1.0313 |
| 0.8224 | 10.9565 | 63 | 1.0367 |
| 0.7715 | 12.0 | 69 | 1.0482 |
| 0.7775 | 12.8696 | 74 | 1.0640 |
| 0.6631 | 13.9130 | 80 | 1.1065 |
| 0.6127 | 14.9565 | 86 | 1.1382 |
| 0.6162 | 16.0 | 92 | 1.1660 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1