|
--- |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
library_name: peft |
|
license: llama3.1 |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: Llama-31-8B_task-2_60-samples_config-1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Llama-31-8B_task-2_60-samples_config-1 |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4092 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 1.0703 | 0.8696 | 5 | 1.0688 | |
|
| 1.0003 | 1.9130 | 11 | 0.9209 | |
|
| 0.9073 | 2.9565 | 17 | 0.8263 | |
|
| 0.781 | 4.0 | 23 | 0.7580 | |
|
| 0.7117 | 4.8696 | 28 | 0.7324 | |
|
| 0.6407 | 5.9130 | 34 | 0.7095 | |
|
| 0.5381 | 6.9565 | 40 | 0.7099 | |
|
| 0.4646 | 8.0 | 46 | 0.7409 | |
|
| 0.3692 | 8.8696 | 51 | 0.7878 | |
|
| 0.2543 | 9.9130 | 57 | 0.8772 | |
|
| 0.1333 | 10.9565 | 63 | 1.0029 | |
|
| 0.0576 | 12.0 | 69 | 1.1541 | |
|
| 0.03 | 12.8696 | 74 | 1.4092 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |