|
--- |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
datasets: |
|
- GaetanMichelet/chat-60_ft_task-2 |
|
- GaetanMichelet/chat-120_ft_task-2 |
|
- GaetanMichelet/chat-180_ft_task-2 |
|
library_name: peft |
|
license: llama3.1 |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: Llama-31-8B_task-2_180-samples_config-3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Llama-31-8B_task-2_180-samples_config-3 |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-2, the GaetanMichelet/chat-120_ft_task-2 and the GaetanMichelet/chat-180_ft_task-2 datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7140 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 150 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.0365 | 1.0 | 17 | 1.1316 | |
|
| 1.1746 | 2.0 | 34 | 1.1196 | |
|
| 1.0933 | 3.0 | 51 | 1.0957 | |
|
| 0.985 | 4.0 | 68 | 1.0540 | |
|
| 0.9741 | 5.0 | 85 | 0.9950 | |
|
| 1.0008 | 6.0 | 102 | 0.9377 | |
|
| 0.8935 | 7.0 | 119 | 0.8939 | |
|
| 0.8862 | 8.0 | 136 | 0.8579 | |
|
| 0.8266 | 9.0 | 153 | 0.8294 | |
|
| 0.7797 | 10.0 | 170 | 0.8075 | |
|
| 0.8158 | 11.0 | 187 | 0.7903 | |
|
| 0.6845 | 12.0 | 204 | 0.7742 | |
|
| 0.6819 | 13.0 | 221 | 0.7598 | |
|
| 0.7241 | 14.0 | 238 | 0.7472 | |
|
| 0.695 | 15.0 | 255 | 0.7365 | |
|
| 0.6982 | 16.0 | 272 | 0.7272 | |
|
| 0.622 | 17.0 | 289 | 0.7215 | |
|
| 0.5905 | 18.0 | 306 | 0.7156 | |
|
| 0.6121 | 19.0 | 323 | 0.7140 | |
|
| 0.567 | 20.0 | 340 | 0.7166 | |
|
| 0.5471 | 21.0 | 357 | 0.7172 | |
|
| 0.4761 | 22.0 | 374 | 0.7234 | |
|
| 0.4967 | 23.0 | 391 | 0.7358 | |
|
| 0.4833 | 24.0 | 408 | 0.7644 | |
|
| 0.4071 | 25.0 | 425 | 0.8012 | |
|
| 0.3567 | 26.0 | 442 | 0.8289 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |