metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-1_auto
- GaetanMichelet/chat-120_ft_task-1_auto
- GaetanMichelet/chat-180_ft_task-1_auto
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-1_180-samples_config-2_auto
results: []
Llama-31-8B_task-1_180-samples_config-2_auto
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1_auto, the GaetanMichelet/chat-120_ft_task-1_auto and the GaetanMichelet/chat-180_ft_task-1_auto datasets. It achieves the following results on the evaluation set:
- Loss: 0.8755
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.178 | 0.9412 | 8 | 1.1844 |
0.9678 | 2.0 | 17 | 1.0291 |
0.9547 | 2.9412 | 25 | 0.9495 |
0.8037 | 4.0 | 34 | 0.8970 |
0.7404 | 4.9412 | 42 | 0.8755 |
0.6681 | 6.0 | 51 | 0.9058 |
0.4752 | 6.9412 | 59 | 0.9785 |
0.3663 | 8.0 | 68 | 1.0201 |
0.2328 | 8.9412 | 76 | 1.2509 |
0.1375 | 10.0 | 85 | 1.4120 |
0.1013 | 10.9412 | 93 | 1.4669 |
0.0523 | 12.0 | 102 | 1.5482 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1