metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-1_auto
- GaetanMichelet/chat-120_ft_task-1_auto
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-1_120-samples_config-2_full_auto
results: []
Llama-31-8B_task-1_120-samples_config-2_full_auto
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1_auto and the GaetanMichelet/chat-120_ft_task-1_auto datasets. It achieves the following results on the evaluation set:
- Loss: 0.7873
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1572 | 0.9091 | 5 | 2.1149 |
2.0048 | 2.0 | 11 | 1.8150 |
1.651 | 2.9091 | 16 | 1.5524 |
1.2397 | 4.0 | 22 | 1.1141 |
0.9602 | 4.9091 | 27 | 0.9207 |
0.8646 | 6.0 | 33 | 0.8729 |
0.7895 | 6.9091 | 38 | 0.8490 |
0.7762 | 8.0 | 44 | 0.8273 |
0.7412 | 8.9091 | 49 | 0.8120 |
0.6669 | 10.0 | 55 | 0.7971 |
0.6184 | 10.9091 | 60 | 0.7873 |
0.5857 | 12.0 | 66 | 0.7943 |
0.5374 | 12.9091 | 71 | 0.8102 |
0.4629 | 14.0 | 77 | 0.8345 |
0.396 | 14.9091 | 82 | 0.8902 |
0.336 | 16.0 | 88 | 0.9196 |
0.2438 | 16.9091 | 93 | 1.0492 |
0.1943 | 18.0 | 99 | 1.1073 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1