metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-1_auto
- GaetanMichelet/chat-120_ft_task-1_auto
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-1_120-samples_config-2_auto
results: []
Llama-31-8B_task-1_120-samples_config-2_auto
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1_auto and the GaetanMichelet/chat-120_ft_task-1_auto datasets. It achieves the following results on the evaluation set:
- Loss: 0.8840
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1727 | 0.9091 | 5 | 1.2190 |
1.1492 | 2.0 | 11 | 1.0507 |
0.9803 | 2.9091 | 16 | 1.0035 |
0.8687 | 4.0 | 22 | 0.9365 |
0.7872 | 4.9091 | 27 | 0.9064 |
0.7171 | 6.0 | 33 | 0.8840 |
0.5563 | 6.9091 | 38 | 0.9091 |
0.4878 | 8.0 | 44 | 1.0011 |
0.3849 | 8.9091 | 49 | 1.0698 |
0.2449 | 10.0 | 55 | 1.1907 |
0.1483 | 10.9091 | 60 | 1.3620 |
0.1039 | 12.0 | 66 | 1.4585 |
0.0637 | 12.9091 | 71 | 1.6115 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1