Edit model card

Llama-31-8B_task-1_120-samples_config-1_full_auto

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1_auto and the GaetanMichelet/chat-120_ft_task-1_auto datasets. It achieves the following results on the evaluation set:

  • Loss: 0.7838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
2.1444 1.0 11 1.9951
1.5597 2.0 22 1.5854
1.1135 3.0 33 1.0142
0.8595 4.0 44 0.8794
0.7701 5.0 55 0.8356
0.7434 6.0 66 0.8024
0.6039 7.0 77 0.7895
0.5441 8.0 88 0.7838
0.4965 9.0 99 0.8283
0.353 10.0 110 0.9092
0.2505 11.0 121 1.0033
0.2204 12.0 132 1.1738
0.1355 13.0 143 1.3070
0.1041 14.0 154 1.3560
0.0759 15.0 165 1.3713

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-1_120-samples_config-1_full_auto

Adapter
(452)
this model

Collection including GaetanMichelet/Llama-31-8B_task-1_120-samples_config-1_full_auto