GaetanMichelet's picture
End of training
a8d8fb0 verified
---
base_model: google/gemma-2-2b-it
datasets:
- GaetanMichelet/chat-60_ft_task-3
- GaetanMichelet/chat-120_ft_task-3
library_name: peft
license: gemma
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Gemma-2-2B_task-3_120-samples_config-1_full
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma-2-2B_task-3_120-samples_config-1_full
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co./google/gemma-2-2b-it) on the GaetanMichelet/chat-60_ft_task-3 and the GaetanMichelet/chat-120_ft_task-3 datasets.
It achieves the following results on the evaluation set:
- Loss: 0.9431
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3447 | 1.0 | 11 | 1.3663 |
| 1.1652 | 2.0 | 22 | 1.2194 |
| 1.1036 | 3.0 | 33 | 1.0959 |
| 1.021 | 4.0 | 44 | 0.9977 |
| 0.9434 | 5.0 | 55 | 0.9632 |
| 0.8982 | 6.0 | 66 | 0.9467 |
| 0.8566 | 7.0 | 77 | 0.9431 |
| 0.8274 | 8.0 | 88 | 0.9472 |
| 0.75 | 9.0 | 99 | 0.9635 |
| 0.6436 | 10.0 | 110 | 1.0183 |
| 0.6415 | 11.0 | 121 | 1.0607 |
| 0.5077 | 12.0 | 132 | 1.1554 |
| 0.5122 | 13.0 | 143 | 1.2327 |
| 0.3314 | 14.0 | 154 | 1.3615 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1