GaetanMichelet's picture
End of training
6e1e638 verified
---
base_model: google/gemma-2-2b-it
datasets:
- GaetanMichelet/chat-60_ft_task-2
- GaetanMichelet/chat-120_ft_task-2
library_name: peft
license: gemma
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Gemma-2-2B_task-2_120-samples_config-1_full
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma-2-2B_task-2_120-samples_config-1_full
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co./google/gemma-2-2b-it) on the GaetanMichelet/chat-60_ft_task-2 and the GaetanMichelet/chat-120_ft_task-2 datasets.
It achieves the following results on the evaluation set:
- Loss: 0.8720
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2764 | 1.0 | 11 | 1.3024 |
| 1.0771 | 2.0 | 22 | 1.1453 |
| 1.0212 | 3.0 | 33 | 1.0337 |
| 0.9453 | 4.0 | 44 | 0.9333 |
| 0.8729 | 5.0 | 55 | 0.8991 |
| 0.8348 | 6.0 | 66 | 0.8805 |
| 0.8039 | 7.0 | 77 | 0.8735 |
| 0.7673 | 8.0 | 88 | 0.8720 |
| 0.7032 | 9.0 | 99 | 0.8838 |
| 0.6184 | 10.0 | 110 | 0.9229 |
| 0.6169 | 11.0 | 121 | 0.9628 |
| 0.4972 | 12.0 | 132 | 1.0208 |
| 0.5106 | 13.0 | 143 | 1.0691 |
| 0.3363 | 14.0 | 154 | 1.1944 |
| 0.2612 | 15.0 | 165 | 1.2480 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1