GaetanMichelet's picture
End of training
786dcf2 verified
---
base_model: google/gemma-2-2b-it
datasets:
- GaetanMichelet/chat-60_ft_task-1_auto
- GaetanMichelet/chat-120_ft_task-1_auto
library_name: peft
license: gemma
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Gemma-2-2B_task-1_120-samples_config-2_auto
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma-2-2B_task-1_120-samples_config-2_auto
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co./google/gemma-2-2b-it) on the GaetanMichelet/chat-60_ft_task-1_auto and the GaetanMichelet/chat-120_ft_task-1_auto datasets.
It achieves the following results on the evaluation set:
- Loss: 0.9704
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.5728 | 0.9091 | 5 | 1.6556 |
| 1.5544 | 2.0 | 11 | 1.3106 |
| 1.1135 | 2.9091 | 16 | 1.1138 |
| 0.9739 | 4.0 | 22 | 1.0347 |
| 0.8888 | 4.9091 | 27 | 0.9919 |
| 0.8107 | 6.0 | 33 | 0.9704 |
| 0.6431 | 6.9091 | 38 | 0.9726 |
| 0.5564 | 8.0 | 44 | 1.0095 |
| 0.4886 | 8.9091 | 49 | 1.1149 |
| 0.3412 | 10.0 | 55 | 1.3270 |
| 0.2372 | 10.9091 | 60 | 1.5941 |
| 0.1438 | 12.0 | 66 | 1.8735 |
| 0.0894 | 12.9091 | 71 | 2.1113 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1