|
--- |
|
license: mit |
|
base_model: BAAI/bge-base-en-v1.5 |
|
tags: |
|
- generated_from_trainer |
|
- transformers |
|
model-index: |
|
- name: TAPP-multilabel-bge |
|
results: [] |
|
datasets: |
|
- GIZ/policy_classification |
|
co2_eq_emissions: |
|
emissions: 71.4552917731392 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: true |
|
cpu_model: Intel(R) Xeon(R) CPU @ 2.30GHz |
|
ram_total_size: 12.6747894287109 |
|
hours_used: 1.36 |
|
hardware_used: 1 x Tesla T4 |
|
pipeline_tag: text-classification |
|
library_name: transformers |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# TAPP-multilabel-bge |
|
|
|
This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) on the [Policy-Classification](https://huggingface.co./datasets/GIZ/policy_classification) dataset. |
|
|
|
*The loss function BCEWithLogitsLoss is modified with pos_weight to focus on recall, therefore instead of loss the evaluation metrics are used to assess the model performance during training* |
|
It achieves the following results on the evaluation set: |
|
|
|
- Precision-micro: 0.7772 |
|
- Precision-samples: 0.7644 |
|
- Precision-weighted: 0.7756 |
|
- Recall-micro: 0.8329 |
|
- Recall-samples: 0.7920 |
|
- Recall-weighted: 0.8329 |
|
- F1-micro: 0.8041 |
|
- F1-samples: 0.7609 |
|
- F1-weighted: 0.8029 |
|
|
|
## Model description |
|
|
|
The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict four labels - |
|
ActionLabel, PlansLabel, PolicyLabel, and TargetLabel - that are relevant to a particular task or application |
|
- **Target**: Targets are an intention to achieve a specific result, for example, to reduce GHG emissions to a specific level |
|
(a GHG target) or increase energy efficiency or renewable energy to a specific level (a non-GHG target), typically by |
|
a certain date. |
|
- **Action**: Actions are an intention to implement specific means of achieving GHG reductions, usually in forms of concrete projects. |
|
- **Policies**: Policies are domestic planning documents such as policies, regulations or guidlines. |
|
- **Plans**:Plans are broader than specific policies or actions, such as a general intention to ‘improve efficiency’, ‘develop renewable energy’, etc. |
|
|
|
*The terms come from the World Bank's NDC platform and WRI's publication* |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
- Training Dataset: 10031 |
|
| Class | Positive Count of Class| |
|
|:-------------|:--------| |
|
| Action | 5416 | |
|
| Plans | 2140 | |
|
| Policy | 1396| |
|
| Target | 2911 | |
|
|
|
- Validation Dataset: 932 |
|
| Class | Positive Count of Class| |
|
|:-------------|:--------| |
|
| Action | 513 | |
|
| Plans | 198 | |
|
| Policy | 122 | |
|
| Target | 256 | |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.4e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| |
|
| 0.7161 | 1.0 | 627 | 0.6322 | 0.5931 | 0.6373 | 0.6274 | 0.8219 | 0.7833 | 0.8219 | 0.6890 | 0.6728 | 0.7000 | |
|
| 0.4549 | 2.0 | 1254 | 0.5420 | 0.6639 | 0.6891 | 0.7049 | 0.8090 | 0.7684 | 0.8090 | 0.7293 | 0.7048 | 0.7409 | |
|
| 0.2599 | 3.0 | 1881 | 0.6966 | 0.7354 | 0.7396 | 0.7346 | 0.8219 | 0.7845 | 0.8219 | 0.7762 | 0.7425 | 0.7713 | |
|
| 0.1405 | 4.0 | 2508 | 0.7530 | 0.7569 | 0.7494 | 0.7569 | 0.8292 | 0.7899 | 0.8292 | 0.7914 | 0.7505 | 0.7905 | |
|
| 0.0681 | 5.0 | 3135 | 0.8234 | 0.7596 | 0.7535 | 0.7599 | 0.8356 | 0.7945 | 0.8356 | 0.7958 | 0.7546 | 0.7953 | |
|
| 0.0291 | 6.0 | 3762 | 0.8849 | 0.7773 | 0.7640 | 0.7776 | 0.8301 | 0.7890 | 0.8301 | 0.8028 | 0.7597 | 0.8027 | |
|
| 0.0147 | 7.0 | 4389 | 0.9217 | 0.7772 | 0.7644 | 0.7756 | 0.8329 | 0.7920 | 0.8329 | 0.8041 | 0.7609 | 0.8029 | |
|
|
|
|label | precision |recall |f1-score| support| |
|
|:-------------:|:---------:|:-----:|:------:|:------:| |
|
|Action |0.826 |0.883 |0.853 | 513.0 | |
|
|Plans |0.653 |0.646 |0.649 | 198.0 | |
|
|Policy |0.726 |0.803 |0.762 | 122.0 | |
|
|Target |0.791 |0.890 |0.838 | 256.0 | |
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Carbon Emitted**: 0.07145 kg of CO2 |
|
- **Hours Used**: 1.36 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: yes |
|
- **GPU Model**: 1 x Tesla T4 |
|
- **CPU Model**: Intel(R) Xeon(R) CPU @ 2.30GHz |
|
- **RAM Size**: 12.67 GB |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |