GIZ
/

ppsingh commited on
Commit
a05830c
1 Parent(s): a02111d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -19
README.md CHANGED
@@ -8,6 +8,16 @@ model-index:
8
  results: []
9
  datasets:
10
  - GIZ/policy_classification
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -114,29 +124,29 @@ The following hyperparameters were used during training:
114
 
115
  |label | precision |recall |f1-score| support|
116
  |:-------------:|:---------:|:-----:|:------:|:------:|
117
- | Agriculture | 0.720 | 0.850|0.780|200|
118
- | Buildings | 0.636 |0.777|0.700|18|
119
- | Coastal Zone | 0.562|0.760|0.646|71|
120
- | Cross-Cutting Area | 0.569 |0.777|0.657|180|
121
- | Disaster Risk Management (DRM) | 0.567 |0.694|0.624|85|
122
- | Economy-wide | 0.461 |0.635| 0.534|85|
123
- | Education | 0.608|0.608|0.608|23|
124
- | Energy | 0.816 |0.838|0.827|254|
125
- | Environment | 0.561 |0.703|0.624|91|
126
- | Health | 0.708|0.750|0.728|68|
127
- | Industries | 0.660 |0.902|0.762|41|
128
- | LULUCF/Forestry | 0.676|0.844|0.751|193|
129
- | Social Development | 0.593 | 0.678|0.633|56|
130
- | Tourism | 0.551 |0.571|0.561|28|
131
- | Transport | 0.700|0.766|0.732|107|
132
  | Urban | 0.414 |0.568|0.479|51|
133
- | Waste | 0.658|0.881|0.753|59|
134
- | Water | 0.602 |0.773|0.677|106|
135
 
136
  ### Environmental Impact
137
  Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
138
- - **Carbon Emitted**: 0.02867 kg of CO2
139
- - **Hours Used**: 0.706 hours
140
 
141
  ### Training Hardware
142
  - **On Cloud**: yes
 
8
  results: []
9
  datasets:
10
  - GIZ/policy_classification
11
+
12
+ co2_eq_emissions:
13
+ emissions: 58.1932553246115
14
+ source: codecarbon
15
+ training_type: fine-tuning
16
+ on_cloud: true
17
+ cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
18
+ ram_total_size: 12.6747817993164
19
+ hours_used: 1.43
20
+ hardware_used: 1 x Tesla T4
21
  ---
22
 
23
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
124
 
125
  |label | precision |recall |f1-score| support|
126
  |:-------------:|:---------:|:-----:|:------:|:------:|
127
+ | Agriculture | 0.740 | 0.840|0.786|200|
128
+ | Buildings | 0.535 |0.833|0.652|18|
129
+ | Coastal Zone | 0.579|0.718|0.641|71|
130
+ | Cross-Cutting Area | 0.551 |0.738|0.631|180|
131
+ | Disaster Risk Management (DRM) | 0.642 |0.717|0.67|85|
132
+ | Economy-wide | 0.401 |0.600| 0.481|85|
133
+ | Education | 0.652|0.652|0.652|23|
134
+ | Energy | 0.771 |0.862|0.814|254|
135
+ | Environment | 0.539 |0.747|0.626|91|
136
+ | Health | 0.743|0.808|0.774|68|
137
+ | Industries | 0.648|0.853|0.736|41|
138
+ | LULUCF/Forestry | 0.728|0.849|0.784|193|
139
+ | Social Development | 0.661 | 0.767|0.710|56|
140
+ | Tourism | 0.586 |0.607|0.596|28|
141
+ | Transport | 0.715|0.822|0.765|107|
142
  | Urban | 0.414 |0.568|0.479|51|
143
+ | Waste | 0.662|0.898|0.762|59|
144
+ | Water | 0.601 |.783|0.680|106|
145
 
146
  ### Environmental Impact
147
  Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
148
+ - **Carbon Emitted**: 0.05819 kg of CO2
149
+ - **Hours Used**: 1.43 hours
150
 
151
  ### Training Hardware
152
  - **On Cloud**: yes