Update README.md
Browse files
README.md
CHANGED
@@ -8,6 +8,16 @@ model-index:
|
|
8 |
results: []
|
9 |
datasets:
|
10 |
- GIZ/policy_classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -114,29 +124,29 @@ The following hyperparameters were used during training:
|
|
114 |
|
115 |
|label | precision |recall |f1-score| support|
|
116 |
|:-------------:|:---------:|:-----:|:------:|:------:|
|
117 |
-
| Agriculture | 0.
|
118 |
-
| Buildings | 0.
|
119 |
-
| Coastal Zone | 0.
|
120 |
-
| Cross-Cutting Area | 0.
|
121 |
-
| Disaster Risk Management (DRM) | 0.
|
122 |
-
| Economy-wide | 0.
|
123 |
-
| Education | 0.
|
124 |
-
| Energy | 0.
|
125 |
-
| Environment | 0.
|
126 |
-
| Health | 0.
|
127 |
-
| Industries | 0.
|
128 |
-
| LULUCF/Forestry | 0.
|
129 |
-
| Social Development | 0.
|
130 |
-
| Tourism | 0.
|
131 |
-
| Transport | 0.
|
132 |
| Urban | 0.414 |0.568|0.479|51|
|
133 |
-
| Waste | 0.
|
134 |
-
| Water | 0.
|
135 |
|
136 |
### Environmental Impact
|
137 |
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
138 |
-
- **Carbon Emitted**: 0.
|
139 |
-
- **Hours Used**:
|
140 |
|
141 |
### Training Hardware
|
142 |
- **On Cloud**: yes
|
|
|
8 |
results: []
|
9 |
datasets:
|
10 |
- GIZ/policy_classification
|
11 |
+
|
12 |
+
co2_eq_emissions:
|
13 |
+
emissions: 58.1932553246115
|
14 |
+
source: codecarbon
|
15 |
+
training_type: fine-tuning
|
16 |
+
on_cloud: true
|
17 |
+
cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
|
18 |
+
ram_total_size: 12.6747817993164
|
19 |
+
hours_used: 1.43
|
20 |
+
hardware_used: 1 x Tesla T4
|
21 |
---
|
22 |
|
23 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
124 |
|
125 |
|label | precision |recall |f1-score| support|
|
126 |
|:-------------:|:---------:|:-----:|:------:|:------:|
|
127 |
+
| Agriculture | 0.740 | 0.840|0.786|200|
|
128 |
+
| Buildings | 0.535 |0.833|0.652|18|
|
129 |
+
| Coastal Zone | 0.579|0.718|0.641|71|
|
130 |
+
| Cross-Cutting Area | 0.551 |0.738|0.631|180|
|
131 |
+
| Disaster Risk Management (DRM) | 0.642 |0.717|0.67|85|
|
132 |
+
| Economy-wide | 0.401 |0.600| 0.481|85|
|
133 |
+
| Education | 0.652|0.652|0.652|23|
|
134 |
+
| Energy | 0.771 |0.862|0.814|254|
|
135 |
+
| Environment | 0.539 |0.747|0.626|91|
|
136 |
+
| Health | 0.743|0.808|0.774|68|
|
137 |
+
| Industries | 0.648|0.853|0.736|41|
|
138 |
+
| LULUCF/Forestry | 0.728|0.849|0.784|193|
|
139 |
+
| Social Development | 0.661 | 0.767|0.710|56|
|
140 |
+
| Tourism | 0.586 |0.607|0.596|28|
|
141 |
+
| Transport | 0.715|0.822|0.765|107|
|
142 |
| Urban | 0.414 |0.568|0.479|51|
|
143 |
+
| Waste | 0.662|0.898|0.762|59|
|
144 |
+
| Water | 0.601 |.783|0.680|106|
|
145 |
|
146 |
### Environmental Impact
|
147 |
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
148 |
+
- **Carbon Emitted**: 0.05819 kg of CO2
|
149 |
+
- **Hours Used**: 1.43 hours
|
150 |
|
151 |
### Training Hardware
|
152 |
- **On Cloud**: yes
|