metadata
license: mit
base_model: BAAI/bge-base-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: CONDITIONAL-multilabel-bge
results: []
CONDITIONAL-multilabel-bge
This model is a fine-tuned version of BAAI/bge-base-en-v1.5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5295
- Precision-micro: 0.5138
- Precision-samples: 0.1866
- Precision-weighted: 0.5169
- Recall-micro: 0.7378
- Recall-samples: 0.1874
- Recall-weighted: 0.7378
- F1-micro: 0.6058
- F1-samples: 0.1852
- F1-weighted: 0.6065
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.02e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5361 | 1.0 | 369 | 0.4405 | 0.3405 | 0.1655 | 0.4102 | 0.6311 | 0.1622 | 0.6311 | 0.4423 | 0.1622 | 0.4503 |
0.3692 | 2.0 | 738 | 0.3437 | 0.4631 | 0.1794 | 0.4929 | 0.6890 | 0.1761 | 0.6890 | 0.5539 | 0.1762 | 0.5604 |
0.182 | 3.0 | 1107 | 0.3915 | 0.4702 | 0.1857 | 0.4871 | 0.7470 | 0.1891 | 0.7470 | 0.5771 | 0.1854 | 0.5800 |
0.0757 | 4.0 | 1476 | 0.4713 | 0.4960 | 0.1882 | 0.4986 | 0.7530 | 0.1908 | 0.7530 | 0.5981 | 0.1877 | 0.5987 |
0.0298 | 5.0 | 1845 | 0.4971 | 0.5161 | 0.1840 | 0.5184 | 0.7317 | 0.1857 | 0.7317 | 0.6053 | 0.1829 | 0.6058 |
0.0152 | 6.0 | 2214 | 0.5295 | 0.5138 | 0.1866 | 0.5169 | 0.7378 | 0.1874 | 0.7378 | 0.6058 | 0.1852 | 0.6065 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2