|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- FreedomIntelligence/ApolloMoEDataset |
|
language: |
|
- ar |
|
- en |
|
- zh |
|
- ko |
|
- ja |
|
- mn |
|
- th |
|
- vi |
|
- lo |
|
- mg |
|
- de |
|
- pt |
|
- es |
|
- fr |
|
- ru |
|
- it |
|
- hr |
|
- gl |
|
- cs |
|
- co |
|
- la |
|
- uk |
|
- bs |
|
- bg |
|
- eo |
|
- sq |
|
- da |
|
- sa |
|
- 'no' |
|
- gn |
|
- sr |
|
- sk |
|
- gd |
|
- lb |
|
- hi |
|
- ku |
|
- mt |
|
- he |
|
- ln |
|
- bm |
|
- sw |
|
- ig |
|
- rw |
|
- ha |
|
metrics: |
|
- accuracy |
|
base_model: |
|
- google/gemma-2-9b |
|
pipeline_tag: question-answering |
|
tags: |
|
- biology |
|
- medical |
|
--- |
|
# Democratizing Medical LLMs For Much More Languages |
|
|
|
Covering 12 Major Languages including English, Chinese, French, Hindi, Spanish, Arabic, Russian, Japanese, Korean, German, Italian, Portuguese and 38 Minor Languages So far. |
|
|
|
|
|
|
|
<p align="center"> |
|
📃 <a href="https://arxiv.org/abs/2410.10626" target="_blank">Paper</a> • 🌐 <a href="" target="_blank">Demo</a> • 🤗 <a href="https://huggingface.co./datasets/FreedomIntelligence/ApolloMoEDataset" target="_blank">ApolloMoEDataset</a> • 🤗 <a href="https://huggingface.co./datasets/FreedomIntelligence/ApolloMoEBench" target="_blank">ApolloMoEBench</a> • 🤗 <a href="https://huggingface.co./collections/FreedomIntelligence/apollomoe-and-apollo2-670ddebe3bb1ba1aebabbf2c" target="_blank">Models</a> •🌐 <a href="https://github.com/FreedomIntelligence/Apollo" target="_blank">Apollo</a> • 🌐 <a href="https://github.com/FreedomIntelligence/ApolloMoE" target="_blank">ApolloMoE</a> |
|
</p> |
|
|
|
|
|
|
|
![Apollo](assets/apollo_medium_final.png) |
|
|
|
|
|
## 🌈 Update |
|
|
|
* **[2024.10.15]** ApolloMoE repo is published!🎉 |
|
|
|
|
|
## Languages Coverage |
|
12 Major Languages and 38 Minor Languages |
|
|
|
<details> |
|
<summary>Click to view the Languages Coverage</summary> |
|
|
|
![ApolloMoE](assets/languages.png) |
|
|
|
</details> |
|
|
|
|
|
## Architecture |
|
|
|
<details> |
|
<summary>Click to view the MoE routing image</summary> |
|
|
|
![ApolloMoE](assets/hybrid_routing.png) |
|
|
|
</details> |
|
|
|
## Results |
|
|
|
#### Dense |
|
🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo2-0.5B" target="_blank">Apollo2-0.5B</a> • 🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo2-1.5B" target="_blank">Apollo2-1.5B</a> • 🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo2-2B" target="_blank">Apollo2-2B</a> |
|
|
|
🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo2-3.8B" target="_blank">Apollo2-3.8B</a> • 🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo2-7B" target="_blank">Apollo2-7B</a> • 🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo2-9B" target="_blank">Apollo2-9B</a> |
|
|
|
<details> |
|
<summary>Click to view the Dense Models Results</summary> |
|
|
|
![ApolloMoE](assets/dense_results.png) |
|
|
|
</details> |
|
|
|
|
|
#### Post-MoE |
|
🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo-MoE-0.5B" target="_blank">Apollo-MoE-0.5B</a> • 🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo-MoE-1.5B" target="_blank">Apollo-MoE-1.5B</a> • 🤗 <a href="https://huggingface.co./FreedomIntelligence/Apollo-MoE-7B" target="_blank">Apollo-MoE-7B</a> |
|
|
|
<details> |
|
<summary>Click to view the Post-MoE Models Results</summary> |
|
|
|
![ApolloMoE](assets/post_moe_results.png) |
|
|
|
</details> |
|
|
|
|
|
|
|
|
|
## Usage Format |
|
##### Apollo2 |
|
- 0.5B, 1.5B, 7B: User:{query}\nAssistant:{response}<|endoftext|> |
|
- 2B, 9B: User:{query}\nAssistant:{response}\<eos\> |
|
- 3.8B: <|user|>\n{query}<|end|><|assisitant|>\n{response}<|end|> |
|
|
|
##### Apollo-MoE |
|
- 0.5B, 1.5B, 7B: User:{query}\nAssistant:{response}<|endoftext|> |
|
|
|
## Dataset & Evaluation |
|
|
|
- Dataset |
|
🤗 <a href="https://huggingface.co./datasets/FreedomIntelligence/ApolloMoEDataset" target="_blank">ApolloMoEDataset</a> |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
![ApolloMoE](assets/Dataset.png) |
|
|
|
- [Data category](https://huggingface.co./datasets/FreedomIntelligence/ApolloCorpus/tree/main/train) |
|
|
|
|
|
</details> |
|
|
|
- Evaluation |
|
🤗 <a href="https://huggingface.co./datasets/FreedomIntelligence/ApolloMoEBench" target="_blank">ApolloMoEBench</a> |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
- EN: |
|
- [MedQA-USMLE](https://huggingface.co./datasets/GBaker/MedQA-USMLE-4-options) |
|
- [MedMCQA](https://huggingface.co./datasets/medmcqa/viewer/default/test) |
|
- [PubMedQA](https://huggingface.co./datasets/pubmed_qa): Because the results fluctuated too much, they were not used in the paper. |
|
- [MMLU-Medical](https://huggingface.co./datasets/cais/mmlu) |
|
- Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine |
|
- ZH: |
|
- [MedQA-MCMLE](https://huggingface.co./datasets/bigbio/med_qa/viewer/med_qa_zh_4options_bigbio_qa/test) |
|
- [CMB-single](https://huggingface.co./datasets/FreedomIntelligence/CMB): Not used in the paper |
|
- Randomly sample 2,000 multiple-choice questions with single answer. |
|
- [CMMLU-Medical](https://huggingface.co./datasets/haonan-li/cmmlu) |
|
- Anatomy, Clinical_knowledge, College_medicine, Genetics, Nutrition, Traditional_chinese_medicine, Virology |
|
- [CExam](https://github.com/williamliujl/CMExam): Not used in the paper |
|
- Randomly sample 2,000 multiple-choice questions |
|
|
|
|
|
- ES: [Head_qa](https://huggingface.co./datasets/head_qa) |
|
- FR: |
|
- [Frenchmedmcqa](https://github.com/qanastek/FrenchMedMCQA) |
|
- [MMLU_FR] |
|
- Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine |
|
- HI: [MMLU_HI](https://huggingface.co./datasets/FreedomIntelligence/MMLU_Hindi) |
|
- Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine |
|
- AR: [MMLU_AR](https://huggingface.co./datasets/FreedomIntelligence/MMLU_Arabic) |
|
- Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine |
|
- JA: [IgakuQA](https://github.com/jungokasai/IgakuQA) |
|
- KO: [KorMedMCQA](https://huggingface.co./datasets/sean0042/KorMedMCQA) |
|
- IT: |
|
- [MedExpQA](https://huggingface.co./datasets/HiTZ/MedExpQA) |
|
- [MMLU_IT] |
|
- Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine |
|
- DE: [BioInstructQA](https://huggingface.co./datasets/BioMistral/BioInstructQA): German part |
|
- PT: [BioInstructQA](https://huggingface.co./datasets/BioMistral/BioInstructQA): Portuguese part |
|
- RU: [RuMedBench](https://github.com/sb-ai-lab/MedBench) |
|
|
|
|
|
|
|
|
|
</details> |
|
## Model Download and Inference |
|
We take Apollo-MoE-0.5B as an example |
|
1. Login Huggingface |
|
|
|
``` |
|
huggingface-cli login --token $HUGGINGFACE_TOKEN |
|
``` |
|
|
|
2. Download model to local dir |
|
|
|
```python |
|
from huggingface_hub import snapshot_download |
|
import os |
|
|
|
local_model_dir=os.path.join('/path/to/models/dir','Apollo-MoE-0.5B') |
|
snapshot_download(repo_id="FreedomIntelligence/Apollo-MoE-0.5B", local_dir=local_model_dir) |
|
``` |
|
|
|
3. Inference Example |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
import os |
|
|
|
local_model_dir=os.path.join('/path/to/models/dir','Apollo-MoE-0.5B') |
|
|
|
model=AutoModelForCausalLM.from_pretrained(local_model_dir,trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained(local_model_dir,trust_remote_code=True) |
|
generation_config = GenerationConfig.from_pretrained(local_model_dir, pad_token_id=tokenizer.pad_token_id, num_return_sequences=1, max_new_tokens=7, min_new_tokens=2, do_sample=False, temperature=1.0, top_k=50, top_p=1.0) |
|
|
|
inputs = tokenizer('Answer direclty.\nThe capital of Mongolia is Ulaanbaatar.\nThe capital of Iceland is Reykjavik.\nThe capital of Australia is', return_tensors='pt') |
|
inputs = inputs.to(model.device) |
|
pred = model.generate(**inputs,generation_config=generation_config) |
|
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## Results reproduction |
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
We take Apollo2-7B or Apollo-MoE-0.5B as example |
|
1. Download Dataset for project: |
|
|
|
``` |
|
bash 0.download_data.sh |
|
``` |
|
|
|
2. Prepare test and dev data for specific model: |
|
|
|
|
|
- Create test data for with special token |
|
|
|
``` |
|
bash 1.data_process_test&dev.sh |
|
``` |
|
|
|
3. Prepare train data for specific model (Create tokenized data in advance): |
|
|
|
|
|
- You can adjust data Training order and Training Epoch in this step |
|
|
|
``` |
|
bash 2.data_process_train.sh |
|
``` |
|
|
|
4. Train the model |
|
|
|
|
|
- If you want to train in Multi Nodes please refer to ./src/sft/training_config/zero_multi.yaml |
|
|
|
|
|
``` |
|
bash 3.single_node_train.sh |
|
``` |
|
|
|
|
|
5. Evaluate your model: Generate score for benchmark |
|
|
|
``` |
|
bash 4.eval.sh |
|
``` |
|
|
|
</details> |
|
|
|
|
|
|
|
## Citation |
|
Please use the following citation if you intend to use our dataset for training or evaluation: |
|
|
|
``` |
|
@misc{zheng2024efficientlydemocratizingmedicalllms, |
|
title={Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts}, |
|
author={Guorui Zheng and Xidong Wang and Juhao Liang and Nuo Chen and Yuping Zheng and Benyou Wang}, |
|
year={2024}, |
|
eprint={2410.10626}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2410.10626}, |
|
} |
|
``` |
|
|