FredZhang7's picture
Update README.md
3da8a05
|
raw
history blame
2.83 kB
metadata
license: creativeml-openrail-m
language:
  - en
widget:
  - text: 1girl, fate
  - text: 1boy, league of legends
  - text: 1girl, genshin impact
  - text: 1boy, national basketball association
  - text: 1girl, spy x
  - text: 1girl, absurdres
tags:
  - stable-diffusion
  - anime
  - anything-v4
  - art
  - arxiv:2210.14140
datasets:
  - FredZhang7/anime-prompts-180K

Fast Anime PromptGen

pytorch_model is trained on 80K anime tags, all with up_score greater than 8 and without "greyscale","girls","boys", and "others", fetched from the Safebooru API. I didn't release the V1 model because it only generated gibberish prompts. After trying all means to correct that behavior, I eventually figured that the cause of the gibberish prompts is not from the model or training duration, but rather from the random usernames present in the training data. Here's the complete prompt preprocessing.

Todo:

  • upload Danbooru model

Text-to-image Examples

Prefix 1girl | Generated 1girl prompts | Model Anything V4

Prefix 1boy  | Generated 1boy prompts | Model Anything V4

Contrastive Search

pip install --upgrade transformers
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, pipeline
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model = GPT2LMHeadModel.from_pretrained('FredZhang7/anime-anything-promptgen')

prompt = r'1girl, genshin'

# generate text using fine-tuned model
nlp = pipeline('text-generation', model=model, tokenizer=tokenizer)

# generate 10 samples using greedy search
outs = nlp(prompt, max_length=76, num_return_sequences=10, do_sample=True, repetition_penalty=1.1, temperature=0.7, top_k=4, early_stopping=True)

print('\nInput:\n' + 100 * '-')
print('\033[96m' + prompt + '\033[0m')
print('\nOutput:\n' + 100 * '-')
for i in range(len(outs)):
    # remove trailing commas and double spaces
    outs[i] = str(outs[i]['generated_text']).replace('  ', '').rstrip(',')
print('\033[92m' + '\n\n'.join(outs) + '\033[0m\n')

Output Example:

Please see Fast GPT PromptGen for more info on the pipeline parameters.

Tips

  • If you feel like a generated anime character doesn't show emotions, try emoticons like ;o, :o, ;p, :d, :p, and ;d in the prompt. I often use happy smirk, happy smile, laughing closed eyes, etc. to make the characters more lively and expressive.

  • Adding absurdres, instead of highres and masterpiece, to a prompt tends to increase the sharpness of a generated image.