FredNajjar's picture
Update README.md
dbb80ea
metadata
language: en
tags:
  - bigbird
  - question-answering
  - squad-v2.2
license: apache-2.0
datasets:
  - squad_v2
metrics:
  - f1
  - exact_match
library_name: adapter-transformers
pipeline_tag: question-answering

FredNajjar/bigbird-QA-squad_v2.2

Fine-tuned google/bigbird-roberta-base model on the SQuAD 2.0 dataset for English extractive question answering.

Model Details

Training Hyperparameters

  • Learning Rate: 3e-05
  • Train Batch Size: 16
  • Eval Batch Size: 8
  • Seed: 42
  • Gradient Accumulation Steps: 8
  • Total Train Batch Size: 128
  • Optimizer: Adam (betas=(0.9,0.999), epsilon=1e-08)
  • LR Scheduler: Linear with 121 warmup steps
  • Number of Epochs: 3

Results on SQuAD 2.0

  • F1 Score: 81.39%
  • Exact Match: 77.82%

Usage

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "FredNajjar/bigbird-QA-squad_v2.2"
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
        'question': 'Your question here',
    'context': 'Your context here'
}
res = nlp(QA_input)
  • Framework Versions:
    • Transformers: 4.34.0
    • Pytorch: 2.0.1+cu118
    • Datasets: 2.14.5
    • Tokenizers: 0.14.1

Limitations and Bias

This model inherits limitations and potential biases from the base BigBird model and the SQuAD 2.0 training data.

Contact

For inquiries, please reach out via LinkedIn.