Edit model card

bert_800_abstracts_NER

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4059
  • Precision: 0.5876
  • Recall: 0.6756
  • F1: 0.6285
  • Accuracy: 0.8788
  • Per Tag Metrics: {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9902903892834667}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9926728400611345}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9952800503461297}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9890766879439}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9784230872965927}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9925829362582037}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9902004854805359}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9993706733794839}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9291108513890137}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9714555425694507}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.992403128652342}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9893014474512272}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9768048188438371}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9912793311157062}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9793670772273667}}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Per Tag Metrics
No log 1.0 221 0.4059 0.5876 0.6756 0.6285 0.8788 {'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9902903892834667}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9926728400611345}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9952800503461297}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9890766879439}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9784230872965927}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9925829362582037}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9902004854805359}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9993706733794839}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9291108513890137}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9714555425694507}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.992403128652342}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9893014474512272}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9768048188438371}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9912793311157062}, 'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9793670772273667}}

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.1+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Flamenco43/bert_800_abstracts_NER

Finetuned
(2077)
this model